Loading…
In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions
Aqueous solutions containing the nanoscale uranyl peroxide cage clusters U60, [(UO2)(O2)(OH)]6060-, and U60Ox30, [{(UO2)(O2)}60(C2O4)30]60-, were monitored by in situ Raman spectroscopy during stepwise heating to 180 °C. In solutions containing U60, clusters persist to 120 °C, although conversion of...
Saved in:
Published in: | Dalton transactions : an international journal of inorganic chemistry 2019, Vol.48 (22), p.7755-7765 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073 |
container_end_page | 7765 |
container_issue | 22 |
container_start_page | 7755 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 48 |
creator | Lobeck, Haylie L Traustason, Hrafn Julien, Patrick A FitzPatrick, John R Mana, Sara Szymanowski, Jennifer E S Burns, Peter C |
description | Aqueous solutions containing the nanoscale uranyl peroxide cage clusters U60, [(UO2)(O2)(OH)]6060-, and U60Ox30, [{(UO2)(O2)}60(C2O4)30]60-, were monitored by in situ Raman spectroscopy during stepwise heating to 180 °C. In solutions containing U60, clusters persist to 120 °C, although conversion of U60 to U24, [(UO2)(O2)(OH)]2424-, occurs above 100 °C. U60Ox30 persisted in solutions heated to 150 °C, although partial conversion to smaller uranyl peroxide clusters species was observed beginning at 100 °C. Upon breakdown of the uranyl peroxide cage clusters, uranium precipitated as a compreignacite-like phase, K2[(UO2)3O2(OH)3]2(H2O)7, and metaschoepite, [(UO2)8O2(OH)12](H2O)10. The role of the countercations, oxalate bridge, and solution pH are examined in order to better understand the mobility of these species at elevated temperatures. |
doi_str_mv | 10.1039/c9dt01529a |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1510719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234431620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMofl_8ARL0IsJqJmma9risn7AgiJ5Lms66lTapSQruvzfrqgcvMwPz8DLvvIScALsCJsprUzaRgeSl3iL7kCk1KbnItv9mnu-RgxDeGeOcSb5L9gSwPM9A7hPzaGlo40ifda_TOKCJ3gXjhhV1Czp6bVcdHdC7z7ZBarVNS90hNfotlW4MEX2go23Q0-Wq8S4u0fe6o8bZpo2ts-GI7Cx0F_D4px-S17vbl9nDZP50_zibzidGqCJONBgGda5Aq6xWkEuQkAthZCFqzRtWcEQlC6YyLKTMMyHKphBG1CBNwZkSh-Rso-tCbKtg2ohmmc6wyVOVxJiCMkEXG2jw7mPEEKu-DQa7Tlt0Y6g4F1AywRUk9Pwf-u5Gb5OFNZVlAnLOEnW5oUz6W_C4qAbf9tqvKmDVOp9qVt68fOczTfDpj-RY99j8ob-BiC8PHYls</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234431620</pqid></control><display><type>article</type><title>In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions</title><source>Royal Society of Chemistry</source><creator>Lobeck, Haylie L ; Traustason, Hrafn ; Julien, Patrick A ; FitzPatrick, John R ; Mana, Sara ; Szymanowski, Jennifer E S ; Burns, Peter C</creator><creatorcontrib>Lobeck, Haylie L ; Traustason, Hrafn ; Julien, Patrick A ; FitzPatrick, John R ; Mana, Sara ; Szymanowski, Jennifer E S ; Burns, Peter C ; Univ. of Notre Dame, IN (United States)</creatorcontrib><description>Aqueous solutions containing the nanoscale uranyl peroxide cage clusters U60, [(UO2)(O2)(OH)]6060-, and U60Ox30, [{(UO2)(O2)}60(C2O4)30]60-, were monitored by in situ Raman spectroscopy during stepwise heating to 180 °C. In solutions containing U60, clusters persist to 120 °C, although conversion of U60 to U24, [(UO2)(O2)(OH)]2424-, occurs above 100 °C. U60Ox30 persisted in solutions heated to 150 °C, although partial conversion to smaller uranyl peroxide clusters species was observed beginning at 100 °C. Upon breakdown of the uranyl peroxide cage clusters, uranium precipitated as a compreignacite-like phase, K2[(UO2)3O2(OH)3]2(H2O)7, and metaschoepite, [(UO2)8O2(OH)12](H2O)10. The role of the countercations, oxalate bridge, and solution pH are examined in order to better understand the mobility of these species at elevated temperatures.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c9dt01529a</identifier><identifier>PMID: 31066415</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aqueous solutions ; Cages ; Clusters ; Conversion ; Heating ; High temperature ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; NANOSCIENCE AND NANOTECHNOLOGY ; Polytetrafluoroethylene ; RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY ; Raman spectroscopy ; Sapphire ; Scanning electron microscopy ; Spectrum analysis ; Uranium ; Uranium dioxide ; Uranium oxides</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2019, Vol.48 (22), p.7755-7765</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073</citedby><cites>FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073</cites><orcidid>0000-0002-2319-9628 ; 0000-0002-7032-1198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31066415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1510719$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lobeck, Haylie L</creatorcontrib><creatorcontrib>Traustason, Hrafn</creatorcontrib><creatorcontrib>Julien, Patrick A</creatorcontrib><creatorcontrib>FitzPatrick, John R</creatorcontrib><creatorcontrib>Mana, Sara</creatorcontrib><creatorcontrib>Szymanowski, Jennifer E S</creatorcontrib><creatorcontrib>Burns, Peter C</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><title>In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Aqueous solutions containing the nanoscale uranyl peroxide cage clusters U60, [(UO2)(O2)(OH)]6060-, and U60Ox30, [{(UO2)(O2)}60(C2O4)30]60-, were monitored by in situ Raman spectroscopy during stepwise heating to 180 °C. In solutions containing U60, clusters persist to 120 °C, although conversion of U60 to U24, [(UO2)(O2)(OH)]2424-, occurs above 100 °C. U60Ox30 persisted in solutions heated to 150 °C, although partial conversion to smaller uranyl peroxide clusters species was observed beginning at 100 °C. Upon breakdown of the uranyl peroxide cage clusters, uranium precipitated as a compreignacite-like phase, K2[(UO2)3O2(OH)3]2(H2O)7, and metaschoepite, [(UO2)8O2(OH)12](H2O)10. The role of the countercations, oxalate bridge, and solution pH are examined in order to better understand the mobility of these species at elevated temperatures.</description><subject>Aqueous solutions</subject><subject>Cages</subject><subject>Clusters</subject><subject>Conversion</subject><subject>Heating</subject><subject>High temperature</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Polytetrafluoroethylene</subject><subject>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</subject><subject>Raman spectroscopy</subject><subject>Sapphire</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Uranium</subject><subject>Uranium dioxide</subject><subject>Uranium oxides</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMofl_8ARL0IsJqJmma9risn7AgiJ5Lms66lTapSQruvzfrqgcvMwPz8DLvvIScALsCJsprUzaRgeSl3iL7kCk1KbnItv9mnu-RgxDeGeOcSb5L9gSwPM9A7hPzaGlo40ifda_TOKCJ3gXjhhV1Czp6bVcdHdC7z7ZBarVNS90hNfotlW4MEX2go23Q0-Wq8S4u0fe6o8bZpo2ts-GI7Cx0F_D4px-S17vbl9nDZP50_zibzidGqCJONBgGda5Aq6xWkEuQkAthZCFqzRtWcEQlC6YyLKTMMyHKphBG1CBNwZkSh-Rso-tCbKtg2ohmmc6wyVOVxJiCMkEXG2jw7mPEEKu-DQa7Tlt0Y6g4F1AywRUk9Pwf-u5Gb5OFNZVlAnLOEnW5oUz6W_C4qAbf9tqvKmDVOp9qVt68fOczTfDpj-RY99j8ob-BiC8PHYls</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Lobeck, Haylie L</creator><creator>Traustason, Hrafn</creator><creator>Julien, Patrick A</creator><creator>FitzPatrick, John R</creator><creator>Mana, Sara</creator><creator>Szymanowski, Jennifer E S</creator><creator>Burns, Peter C</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2319-9628</orcidid><orcidid>https://orcid.org/0000-0002-7032-1198</orcidid></search><sort><creationdate>2019</creationdate><title>In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions</title><author>Lobeck, Haylie L ; Traustason, Hrafn ; Julien, Patrick A ; FitzPatrick, John R ; Mana, Sara ; Szymanowski, Jennifer E S ; Burns, Peter C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Cages</topic><topic>Clusters</topic><topic>Conversion</topic><topic>Heating</topic><topic>High temperature</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Polytetrafluoroethylene</topic><topic>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</topic><topic>Raman spectroscopy</topic><topic>Sapphire</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Uranium</topic><topic>Uranium dioxide</topic><topic>Uranium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobeck, Haylie L</creatorcontrib><creatorcontrib>Traustason, Hrafn</creatorcontrib><creatorcontrib>Julien, Patrick A</creatorcontrib><creatorcontrib>FitzPatrick, John R</creatorcontrib><creatorcontrib>Mana, Sara</creatorcontrib><creatorcontrib>Szymanowski, Jennifer E S</creatorcontrib><creatorcontrib>Burns, Peter C</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobeck, Haylie L</au><au>Traustason, Hrafn</au><au>Julien, Patrick A</au><au>FitzPatrick, John R</au><au>Mana, Sara</au><au>Szymanowski, Jennifer E S</au><au>Burns, Peter C</au><aucorp>Univ. of Notre Dame, IN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2019</date><risdate>2019</risdate><volume>48</volume><issue>22</issue><spage>7755</spage><epage>7765</epage><pages>7755-7765</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Aqueous solutions containing the nanoscale uranyl peroxide cage clusters U60, [(UO2)(O2)(OH)]6060-, and U60Ox30, [{(UO2)(O2)}60(C2O4)30]60-, were monitored by in situ Raman spectroscopy during stepwise heating to 180 °C. In solutions containing U60, clusters persist to 120 °C, although conversion of U60 to U24, [(UO2)(O2)(OH)]2424-, occurs above 100 °C. U60Ox30 persisted in solutions heated to 150 °C, although partial conversion to smaller uranyl peroxide clusters species was observed beginning at 100 °C. Upon breakdown of the uranyl peroxide cage clusters, uranium precipitated as a compreignacite-like phase, K2[(UO2)3O2(OH)3]2(H2O)7, and metaschoepite, [(UO2)8O2(OH)12](H2O)10. The role of the countercations, oxalate bridge, and solution pH are examined in order to better understand the mobility of these species at elevated temperatures.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31066415</pmid><doi>10.1039/c9dt01529a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2319-9628</orcidid><orcidid>https://orcid.org/0000-0002-7032-1198</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2019, Vol.48 (22), p.7755-7765 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_osti_scitechconnect_1510719 |
source | Royal Society of Chemistry |
subjects | Aqueous solutions Cages Clusters Conversion Heating High temperature INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY NANOSCIENCE AND NANOTECHNOLOGY Polytetrafluoroethylene RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY Raman spectroscopy Sapphire Scanning electron microscopy Spectrum analysis Uranium Uranium dioxide Uranium oxides |
title | In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20Raman%20spectroscopy%20of%20uranyl%20peroxide%20nanoscale%20cage%20clusters%20under%20hydrothermal%20conditions&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Lobeck,%20Haylie%20L&rft.aucorp=Univ.%20of%20Notre%20Dame,%20IN%20(United%20States)&rft.date=2019&rft.volume=48&rft.issue=22&rft.spage=7755&rft.epage=7765&rft.pages=7755-7765&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c9dt01529a&rft_dat=%3Cproquest_osti_%3E2234431620%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2234431620&rft_id=info:pmid/31066415&rfr_iscdi=true |