Loading…

In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions

Aqueous solutions containing the nanoscale uranyl peroxide cage clusters U60, [(UO2)(O2)(OH)]6060-, and U60Ox30, [{(UO2)(O2)}60(C2O4)30]60-, were monitored by in situ Raman spectroscopy during stepwise heating to 180 °C. In solutions containing U60, clusters persist to 120 °C, although conversion of...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2019, Vol.48 (22), p.7755-7765
Main Authors: Lobeck, Haylie L, Traustason, Hrafn, Julien, Patrick A, FitzPatrick, John R, Mana, Sara, Szymanowski, Jennifer E S, Burns, Peter C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073
cites cdi_FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073
container_end_page 7765
container_issue 22
container_start_page 7755
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 48
creator Lobeck, Haylie L
Traustason, Hrafn
Julien, Patrick A
FitzPatrick, John R
Mana, Sara
Szymanowski, Jennifer E S
Burns, Peter C
description Aqueous solutions containing the nanoscale uranyl peroxide cage clusters U60, [(UO2)(O2)(OH)]6060-, and U60Ox30, [{(UO2)(O2)}60(C2O4)30]60-, were monitored by in situ Raman spectroscopy during stepwise heating to 180 °C. In solutions containing U60, clusters persist to 120 °C, although conversion of U60 to U24, [(UO2)(O2)(OH)]2424-, occurs above 100 °C. U60Ox30 persisted in solutions heated to 150 °C, although partial conversion to smaller uranyl peroxide clusters species was observed beginning at 100 °C. Upon breakdown of the uranyl peroxide cage clusters, uranium precipitated as a compreignacite-like phase, K2[(UO2)3O2(OH)3]2(H2O)7, and metaschoepite, [(UO2)8O2(OH)12](H2O)10. The role of the countercations, oxalate bridge, and solution pH are examined in order to better understand the mobility of these species at elevated temperatures.
doi_str_mv 10.1039/c9dt01529a
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1510719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234431620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMofl_8ARL0IsJqJmma9risn7AgiJ5Lms66lTapSQruvzfrqgcvMwPz8DLvvIScALsCJsprUzaRgeSl3iL7kCk1KbnItv9mnu-RgxDeGeOcSb5L9gSwPM9A7hPzaGlo40ifda_TOKCJ3gXjhhV1Czp6bVcdHdC7z7ZBarVNS90hNfotlW4MEX2go23Q0-Wq8S4u0fe6o8bZpo2ts-GI7Cx0F_D4px-S17vbl9nDZP50_zibzidGqCJONBgGda5Aq6xWkEuQkAthZCFqzRtWcEQlC6YyLKTMMyHKphBG1CBNwZkSh-Rso-tCbKtg2ohmmc6wyVOVxJiCMkEXG2jw7mPEEKu-DQa7Tlt0Y6g4F1AywRUk9Pwf-u5Gb5OFNZVlAnLOEnW5oUz6W_C4qAbf9tqvKmDVOp9qVt68fOczTfDpj-RY99j8ob-BiC8PHYls</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234431620</pqid></control><display><type>article</type><title>In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions</title><source>Royal Society of Chemistry</source><creator>Lobeck, Haylie L ; Traustason, Hrafn ; Julien, Patrick A ; FitzPatrick, John R ; Mana, Sara ; Szymanowski, Jennifer E S ; Burns, Peter C</creator><creatorcontrib>Lobeck, Haylie L ; Traustason, Hrafn ; Julien, Patrick A ; FitzPatrick, John R ; Mana, Sara ; Szymanowski, Jennifer E S ; Burns, Peter C ; Univ. of Notre Dame, IN (United States)</creatorcontrib><description>Aqueous solutions containing the nanoscale uranyl peroxide cage clusters U60, [(UO2)(O2)(OH)]6060-, and U60Ox30, [{(UO2)(O2)}60(C2O4)30]60-, were monitored by in situ Raman spectroscopy during stepwise heating to 180 °C. In solutions containing U60, clusters persist to 120 °C, although conversion of U60 to U24, [(UO2)(O2)(OH)]2424-, occurs above 100 °C. U60Ox30 persisted in solutions heated to 150 °C, although partial conversion to smaller uranyl peroxide clusters species was observed beginning at 100 °C. Upon breakdown of the uranyl peroxide cage clusters, uranium precipitated as a compreignacite-like phase, K2[(UO2)3O2(OH)3]2(H2O)7, and metaschoepite, [(UO2)8O2(OH)12](H2O)10. The role of the countercations, oxalate bridge, and solution pH are examined in order to better understand the mobility of these species at elevated temperatures.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c9dt01529a</identifier><identifier>PMID: 31066415</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aqueous solutions ; Cages ; Clusters ; Conversion ; Heating ; High temperature ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; NANOSCIENCE AND NANOTECHNOLOGY ; Polytetrafluoroethylene ; RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY ; Raman spectroscopy ; Sapphire ; Scanning electron microscopy ; Spectrum analysis ; Uranium ; Uranium dioxide ; Uranium oxides</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2019, Vol.48 (22), p.7755-7765</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073</citedby><cites>FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073</cites><orcidid>0000-0002-2319-9628 ; 0000-0002-7032-1198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31066415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1510719$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lobeck, Haylie L</creatorcontrib><creatorcontrib>Traustason, Hrafn</creatorcontrib><creatorcontrib>Julien, Patrick A</creatorcontrib><creatorcontrib>FitzPatrick, John R</creatorcontrib><creatorcontrib>Mana, Sara</creatorcontrib><creatorcontrib>Szymanowski, Jennifer E S</creatorcontrib><creatorcontrib>Burns, Peter C</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><title>In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Aqueous solutions containing the nanoscale uranyl peroxide cage clusters U60, [(UO2)(O2)(OH)]6060-, and U60Ox30, [{(UO2)(O2)}60(C2O4)30]60-, were monitored by in situ Raman spectroscopy during stepwise heating to 180 °C. In solutions containing U60, clusters persist to 120 °C, although conversion of U60 to U24, [(UO2)(O2)(OH)]2424-, occurs above 100 °C. U60Ox30 persisted in solutions heated to 150 °C, although partial conversion to smaller uranyl peroxide clusters species was observed beginning at 100 °C. Upon breakdown of the uranyl peroxide cage clusters, uranium precipitated as a compreignacite-like phase, K2[(UO2)3O2(OH)3]2(H2O)7, and metaschoepite, [(UO2)8O2(OH)12](H2O)10. The role of the countercations, oxalate bridge, and solution pH are examined in order to better understand the mobility of these species at elevated temperatures.</description><subject>Aqueous solutions</subject><subject>Cages</subject><subject>Clusters</subject><subject>Conversion</subject><subject>Heating</subject><subject>High temperature</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Polytetrafluoroethylene</subject><subject>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</subject><subject>Raman spectroscopy</subject><subject>Sapphire</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Uranium</subject><subject>Uranium dioxide</subject><subject>Uranium oxides</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMofl_8ARL0IsJqJmma9risn7AgiJ5Lms66lTapSQruvzfrqgcvMwPz8DLvvIScALsCJsprUzaRgeSl3iL7kCk1KbnItv9mnu-RgxDeGeOcSb5L9gSwPM9A7hPzaGlo40ifda_TOKCJ3gXjhhV1Czp6bVcdHdC7z7ZBarVNS90hNfotlW4MEX2go23Q0-Wq8S4u0fe6o8bZpo2ts-GI7Cx0F_D4px-S17vbl9nDZP50_zibzidGqCJONBgGda5Aq6xWkEuQkAthZCFqzRtWcEQlC6YyLKTMMyHKphBG1CBNwZkSh-Rso-tCbKtg2ohmmc6wyVOVxJiCMkEXG2jw7mPEEKu-DQa7Tlt0Y6g4F1AywRUk9Pwf-u5Gb5OFNZVlAnLOEnW5oUz6W_C4qAbf9tqvKmDVOp9qVt68fOczTfDpj-RY99j8ob-BiC8PHYls</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Lobeck, Haylie L</creator><creator>Traustason, Hrafn</creator><creator>Julien, Patrick A</creator><creator>FitzPatrick, John R</creator><creator>Mana, Sara</creator><creator>Szymanowski, Jennifer E S</creator><creator>Burns, Peter C</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2319-9628</orcidid><orcidid>https://orcid.org/0000-0002-7032-1198</orcidid></search><sort><creationdate>2019</creationdate><title>In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions</title><author>Lobeck, Haylie L ; Traustason, Hrafn ; Julien, Patrick A ; FitzPatrick, John R ; Mana, Sara ; Szymanowski, Jennifer E S ; Burns, Peter C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Cages</topic><topic>Clusters</topic><topic>Conversion</topic><topic>Heating</topic><topic>High temperature</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Polytetrafluoroethylene</topic><topic>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</topic><topic>Raman spectroscopy</topic><topic>Sapphire</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Uranium</topic><topic>Uranium dioxide</topic><topic>Uranium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobeck, Haylie L</creatorcontrib><creatorcontrib>Traustason, Hrafn</creatorcontrib><creatorcontrib>Julien, Patrick A</creatorcontrib><creatorcontrib>FitzPatrick, John R</creatorcontrib><creatorcontrib>Mana, Sara</creatorcontrib><creatorcontrib>Szymanowski, Jennifer E S</creatorcontrib><creatorcontrib>Burns, Peter C</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobeck, Haylie L</au><au>Traustason, Hrafn</au><au>Julien, Patrick A</au><au>FitzPatrick, John R</au><au>Mana, Sara</au><au>Szymanowski, Jennifer E S</au><au>Burns, Peter C</au><aucorp>Univ. of Notre Dame, IN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2019</date><risdate>2019</risdate><volume>48</volume><issue>22</issue><spage>7755</spage><epage>7765</epage><pages>7755-7765</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Aqueous solutions containing the nanoscale uranyl peroxide cage clusters U60, [(UO2)(O2)(OH)]6060-, and U60Ox30, [{(UO2)(O2)}60(C2O4)30]60-, were monitored by in situ Raman spectroscopy during stepwise heating to 180 °C. In solutions containing U60, clusters persist to 120 °C, although conversion of U60 to U24, [(UO2)(O2)(OH)]2424-, occurs above 100 °C. U60Ox30 persisted in solutions heated to 150 °C, although partial conversion to smaller uranyl peroxide clusters species was observed beginning at 100 °C. Upon breakdown of the uranyl peroxide cage clusters, uranium precipitated as a compreignacite-like phase, K2[(UO2)3O2(OH)3]2(H2O)7, and metaschoepite, [(UO2)8O2(OH)12](H2O)10. The role of the countercations, oxalate bridge, and solution pH are examined in order to better understand the mobility of these species at elevated temperatures.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31066415</pmid><doi>10.1039/c9dt01529a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2319-9628</orcidid><orcidid>https://orcid.org/0000-0002-7032-1198</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2019, Vol.48 (22), p.7755-7765
issn 1477-9226
1477-9234
language eng
recordid cdi_osti_scitechconnect_1510719
source Royal Society of Chemistry
subjects Aqueous solutions
Cages
Clusters
Conversion
Heating
High temperature
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
NANOSCIENCE AND NANOTECHNOLOGY
Polytetrafluoroethylene
RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY
Raman spectroscopy
Sapphire
Scanning electron microscopy
Spectrum analysis
Uranium
Uranium dioxide
Uranium oxides
title In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20Raman%20spectroscopy%20of%20uranyl%20peroxide%20nanoscale%20cage%20clusters%20under%20hydrothermal%20conditions&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Lobeck,%20Haylie%20L&rft.aucorp=Univ.%20of%20Notre%20Dame,%20IN%20(United%20States)&rft.date=2019&rft.volume=48&rft.issue=22&rft.spage=7755&rft.epage=7765&rft.pages=7755-7765&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c9dt01529a&rft_dat=%3Cproquest_osti_%3E2234431620%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-a1c01b671a74b7165151633c583ba2d082ee758074e85564339d83c3b15c82073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2234431620&rft_id=info:pmid/31066415&rfr_iscdi=true