Loading…

Augmented Topological Descriptors of Pore Networks for Material Science

One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO 2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2012-12, Vol.18 (12), p.2041-2050
Main Authors: Ushizima, D., Morozov, D., Weber, G. H., Bianchi, A. G. C., Sethian, J. A., Bethel, E. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO 2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material.
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2012.200