Loading…
Genetic algorithms for computational materials discovery accelerated by machine learning
Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy...
Saved in:
Published in: | npj computational materials 2019-04, Vol.5 (1), Article 46 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | npj computational materials |
container_volume | 5 |
creator | Jennings, Paul C. Lysgaard, Steen Hummelshøj, Jens Strabo Vegge, Tejs Bligaard, Thomas |
description | Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy predictor before analyzing how to augment convergence in genetic algorithm-based approaches by using the model as a surrogate. This leads to a machine learning accelerated genetic algorithm combining robust qualities of the genetic algorithm with rapid machine learning. The approach is used to search for stable, compositionally variant, geometrically similar nanoparticle alloys to illustrate its capability for accelerated materials discovery, e.g., nanoalloy catalysts. The machine learning accelerated approach, in this case, yields a 50-fold reduction in the number of required energy calculations compared to a traditional “brute force” genetic algorithm. This makes searching through the space of all homotops and compositions of a binary alloy particle in a given structure feasible, using density functional theory calculations. |
doi_str_mv | 10.1038/s41524-019-0181-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1511649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207142041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWGofwFvQ82qSTTa7RylahYIXBW9hmp1tU7abmqRC396UFfTiYZiB-b6B-Qm55uyOs7K-j5IrIQvGm1w1L-QZmQimdFE2FTv_M1-SWYxbxjIpaiHZhHwscMDkLIV-7YNLm12knQ_U-t3-kCA5P0BPd5AwOOgjbV20_gvDkYK12GPIm5aujhmxGzcg7RHC4Ib1FbnosoCznz4l70-Pb_PnYvm6eJk_LAsrlUiFFqKqVwjaVggWrGpbJZA1NddNA2rVlnWjtVZKSS1r7ETVqZJVAKAUlKopp-RmvOtjciZal9BurB8GtMlwxXklT9DtCO2D_zxgTGbrDyF_Fo0QTHMpmOSZ4iNlg48xYGf2we0gHA1n5hS0GYM2OT5zCtrI7IjRiZkd1hh-L_8vfQMfgIA4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207142041</pqid></control><display><type>article</type><title>Genetic algorithms for computational materials discovery accelerated by machine learning</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jennings, Paul C. ; Lysgaard, Steen ; Hummelshøj, Jens Strabo ; Vegge, Tejs ; Bligaard, Thomas</creator><creatorcontrib>Jennings, Paul C. ; Lysgaard, Steen ; Hummelshøj, Jens Strabo ; Vegge, Tejs ; Bligaard, Thomas ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy predictor before analyzing how to augment convergence in genetic algorithm-based approaches by using the model as a surrogate. This leads to a machine learning accelerated genetic algorithm combining robust qualities of the genetic algorithm with rapid machine learning. The approach is used to search for stable, compositionally variant, geometrically similar nanoparticle alloys to illustrate its capability for accelerated materials discovery, e.g., nanoalloy catalysts. The machine learning accelerated approach, in this case, yields a 50-fold reduction in the number of required energy calculations compared to a traditional “brute force” genetic algorithm. This makes searching through the space of all homotops and compositions of a binary alloy particle in a given structure feasible, using density functional theory calculations.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-019-0181-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/638/563 ; 639/925/357/354 ; Algorithms ; Artificial intelligence ; Binary alloys ; Catalysts ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Computer applications ; Datasets ; Density functional theory ; Genetic algorithms ; Learning algorithms ; Machine learning ; MATERIALS SCIENCE ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Nanoalloys ; Nanoparticles ; Search algorithms ; Theoretical</subject><ispartof>npj computational materials, 2019-04, Vol.5 (1), Article 46</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593</citedby><cites>FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593</cites><orcidid>0000-0002-1484-0284 ; 0000-0002-2032-8949 ; 0000000214840284 ; 0000000220328949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2207142041/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2207142041?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589,74897</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1511649$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jennings, Paul C.</creatorcontrib><creatorcontrib>Lysgaard, Steen</creatorcontrib><creatorcontrib>Hummelshøj, Jens Strabo</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Bligaard, Thomas</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Genetic algorithms for computational materials discovery accelerated by machine learning</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy predictor before analyzing how to augment convergence in genetic algorithm-based approaches by using the model as a surrogate. This leads to a machine learning accelerated genetic algorithm combining robust qualities of the genetic algorithm with rapid machine learning. The approach is used to search for stable, compositionally variant, geometrically similar nanoparticle alloys to illustrate its capability for accelerated materials discovery, e.g., nanoalloy catalysts. The machine learning accelerated approach, in this case, yields a 50-fold reduction in the number of required energy calculations compared to a traditional “brute force” genetic algorithm. This makes searching through the space of all homotops and compositions of a binary alloy particle in a given structure feasible, using density functional theory calculations.</description><subject>639/301/1034/1037</subject><subject>639/638/563</subject><subject>639/925/357/354</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Binary alloys</subject><subject>Catalysts</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Computer applications</subject><subject>Datasets</subject><subject>Density functional theory</subject><subject>Genetic algorithms</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Search algorithms</subject><subject>Theoretical</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kMFKAzEQhoMoWGofwFvQ82qSTTa7RylahYIXBW9hmp1tU7abmqRC396UFfTiYZiB-b6B-Qm55uyOs7K-j5IrIQvGm1w1L-QZmQimdFE2FTv_M1-SWYxbxjIpaiHZhHwscMDkLIV-7YNLm12knQ_U-t3-kCA5P0BPd5AwOOgjbV20_gvDkYK12GPIm5aujhmxGzcg7RHC4Ib1FbnosoCznz4l70-Pb_PnYvm6eJk_LAsrlUiFFqKqVwjaVggWrGpbJZA1NddNA2rVlnWjtVZKSS1r7ETVqZJVAKAUlKopp-RmvOtjciZal9BurB8GtMlwxXklT9DtCO2D_zxgTGbrDyF_Fo0QTHMpmOSZ4iNlg48xYGf2we0gHA1n5hS0GYM2OT5zCtrI7IjRiZkd1hh-L_8vfQMfgIA4</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Jennings, Paul C.</creator><creator>Lysgaard, Steen</creator><creator>Hummelshøj, Jens Strabo</creator><creator>Vegge, Tejs</creator><creator>Bligaard, Thomas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1484-0284</orcidid><orcidid>https://orcid.org/0000-0002-2032-8949</orcidid><orcidid>https://orcid.org/0000000214840284</orcidid><orcidid>https://orcid.org/0000000220328949</orcidid></search><sort><creationdate>20190410</creationdate><title>Genetic algorithms for computational materials discovery accelerated by machine learning</title><author>Jennings, Paul C. ; Lysgaard, Steen ; Hummelshøj, Jens Strabo ; Vegge, Tejs ; Bligaard, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1034/1037</topic><topic>639/638/563</topic><topic>639/925/357/354</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Binary alloys</topic><topic>Catalysts</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Computer applications</topic><topic>Datasets</topic><topic>Density functional theory</topic><topic>Genetic algorithms</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Search algorithms</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jennings, Paul C.</creatorcontrib><creatorcontrib>Lysgaard, Steen</creatorcontrib><creatorcontrib>Hummelshøj, Jens Strabo</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Bligaard, Thomas</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jennings, Paul C.</au><au>Lysgaard, Steen</au><au>Hummelshøj, Jens Strabo</au><au>Vegge, Tejs</au><au>Bligaard, Thomas</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic algorithms for computational materials discovery accelerated by machine learning</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2019-04-10</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><artnum>46</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy predictor before analyzing how to augment convergence in genetic algorithm-based approaches by using the model as a surrogate. This leads to a machine learning accelerated genetic algorithm combining robust qualities of the genetic algorithm with rapid machine learning. The approach is used to search for stable, compositionally variant, geometrically similar nanoparticle alloys to illustrate its capability for accelerated materials discovery, e.g., nanoalloy catalysts. The machine learning accelerated approach, in this case, yields a 50-fold reduction in the number of required energy calculations compared to a traditional “brute force” genetic algorithm. This makes searching through the space of all homotops and compositions of a binary alloy particle in a given structure feasible, using density functional theory calculations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-019-0181-4</doi><orcidid>https://orcid.org/0000-0002-1484-0284</orcidid><orcidid>https://orcid.org/0000-0002-2032-8949</orcidid><orcidid>https://orcid.org/0000000214840284</orcidid><orcidid>https://orcid.org/0000000220328949</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2019-04, Vol.5 (1), Article 46 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_osti_scitechconnect_1511649 |
source | Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/1034/1037 639/638/563 639/925/357/354 Algorithms Artificial intelligence Binary alloys Catalysts Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Computer applications Datasets Density functional theory Genetic algorithms Learning algorithms Machine learning MATERIALS SCIENCE Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Nanoalloys Nanoparticles Search algorithms Theoretical |
title | Genetic algorithms for computational materials discovery accelerated by machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20algorithms%20for%20computational%20materials%20discovery%20accelerated%20by%20machine%20learning&rft.jtitle=npj%20computational%20materials&rft.au=Jennings,%20Paul%20C.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-04-10&rft.volume=5&rft.issue=1&rft.artnum=46&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-019-0181-4&rft_dat=%3Cproquest_osti_%3E2207142041%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2207142041&rft_id=info:pmid/&rfr_iscdi=true |