Loading…

Genetic algorithms for computational materials discovery accelerated by machine learning

Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy...

Full description

Saved in:
Bibliographic Details
Published in:npj computational materials 2019-04, Vol.5 (1), Article 46
Main Authors: Jennings, Paul C., Lysgaard, Steen, Hummelshøj, Jens Strabo, Vegge, Tejs, Bligaard, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593
cites cdi_FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593
container_end_page
container_issue 1
container_start_page
container_title npj computational materials
container_volume 5
creator Jennings, Paul C.
Lysgaard, Steen
Hummelshøj, Jens Strabo
Vegge, Tejs
Bligaard, Thomas
description Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy predictor before analyzing how to augment convergence in genetic algorithm-based approaches by using the model as a surrogate. This leads to a machine learning accelerated genetic algorithm combining robust qualities of the genetic algorithm with rapid machine learning. The approach is used to search for stable, compositionally variant, geometrically similar nanoparticle alloys to illustrate its capability for accelerated materials discovery, e.g., nanoalloy catalysts. The machine learning accelerated approach, in this case, yields a 50-fold reduction in the number of required energy calculations compared to a traditional “brute force” genetic algorithm. This makes searching through the space of all homotops and compositions of a binary alloy particle in a given structure feasible, using density functional theory calculations.
doi_str_mv 10.1038/s41524-019-0181-4
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1511649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207142041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWGofwFvQ82qSTTa7RylahYIXBW9hmp1tU7abmqRC396UFfTiYZiB-b6B-Qm55uyOs7K-j5IrIQvGm1w1L-QZmQimdFE2FTv_M1-SWYxbxjIpaiHZhHwscMDkLIV-7YNLm12knQ_U-t3-kCA5P0BPd5AwOOgjbV20_gvDkYK12GPIm5aujhmxGzcg7RHC4Ib1FbnosoCznz4l70-Pb_PnYvm6eJk_LAsrlUiFFqKqVwjaVggWrGpbJZA1NddNA2rVlnWjtVZKSS1r7ETVqZJVAKAUlKopp-RmvOtjciZal9BurB8GtMlwxXklT9DtCO2D_zxgTGbrDyF_Fo0QTHMpmOSZ4iNlg48xYGf2we0gHA1n5hS0GYM2OT5zCtrI7IjRiZkd1hh-L_8vfQMfgIA4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207142041</pqid></control><display><type>article</type><title>Genetic algorithms for computational materials discovery accelerated by machine learning</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jennings, Paul C. ; Lysgaard, Steen ; Hummelshøj, Jens Strabo ; Vegge, Tejs ; Bligaard, Thomas</creator><creatorcontrib>Jennings, Paul C. ; Lysgaard, Steen ; Hummelshøj, Jens Strabo ; Vegge, Tejs ; Bligaard, Thomas ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy predictor before analyzing how to augment convergence in genetic algorithm-based approaches by using the model as a surrogate. This leads to a machine learning accelerated genetic algorithm combining robust qualities of the genetic algorithm with rapid machine learning. The approach is used to search for stable, compositionally variant, geometrically similar nanoparticle alloys to illustrate its capability for accelerated materials discovery, e.g., nanoalloy catalysts. The machine learning accelerated approach, in this case, yields a 50-fold reduction in the number of required energy calculations compared to a traditional “brute force” genetic algorithm. This makes searching through the space of all homotops and compositions of a binary alloy particle in a given structure feasible, using density functional theory calculations.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-019-0181-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/638/563 ; 639/925/357/354 ; Algorithms ; Artificial intelligence ; Binary alloys ; Catalysts ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Computer applications ; Datasets ; Density functional theory ; Genetic algorithms ; Learning algorithms ; Machine learning ; MATERIALS SCIENCE ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Nanoalloys ; Nanoparticles ; Search algorithms ; Theoretical</subject><ispartof>npj computational materials, 2019-04, Vol.5 (1), Article 46</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593</citedby><cites>FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593</cites><orcidid>0000-0002-1484-0284 ; 0000-0002-2032-8949 ; 0000000214840284 ; 0000000220328949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2207142041/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2207142041?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589,74897</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1511649$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jennings, Paul C.</creatorcontrib><creatorcontrib>Lysgaard, Steen</creatorcontrib><creatorcontrib>Hummelshøj, Jens Strabo</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Bligaard, Thomas</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Genetic algorithms for computational materials discovery accelerated by machine learning</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy predictor before analyzing how to augment convergence in genetic algorithm-based approaches by using the model as a surrogate. This leads to a machine learning accelerated genetic algorithm combining robust qualities of the genetic algorithm with rapid machine learning. The approach is used to search for stable, compositionally variant, geometrically similar nanoparticle alloys to illustrate its capability for accelerated materials discovery, e.g., nanoalloy catalysts. The machine learning accelerated approach, in this case, yields a 50-fold reduction in the number of required energy calculations compared to a traditional “brute force” genetic algorithm. This makes searching through the space of all homotops and compositions of a binary alloy particle in a given structure feasible, using density functional theory calculations.</description><subject>639/301/1034/1037</subject><subject>639/638/563</subject><subject>639/925/357/354</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Binary alloys</subject><subject>Catalysts</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Computer applications</subject><subject>Datasets</subject><subject>Density functional theory</subject><subject>Genetic algorithms</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Search algorithms</subject><subject>Theoretical</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kMFKAzEQhoMoWGofwFvQ82qSTTa7RylahYIXBW9hmp1tU7abmqRC396UFfTiYZiB-b6B-Qm55uyOs7K-j5IrIQvGm1w1L-QZmQimdFE2FTv_M1-SWYxbxjIpaiHZhHwscMDkLIV-7YNLm12knQ_U-t3-kCA5P0BPd5AwOOgjbV20_gvDkYK12GPIm5aujhmxGzcg7RHC4Ib1FbnosoCznz4l70-Pb_PnYvm6eJk_LAsrlUiFFqKqVwjaVggWrGpbJZA1NddNA2rVlnWjtVZKSS1r7ETVqZJVAKAUlKopp-RmvOtjciZal9BurB8GtMlwxXklT9DtCO2D_zxgTGbrDyF_Fo0QTHMpmOSZ4iNlg48xYGf2we0gHA1n5hS0GYM2OT5zCtrI7IjRiZkd1hh-L_8vfQMfgIA4</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Jennings, Paul C.</creator><creator>Lysgaard, Steen</creator><creator>Hummelshøj, Jens Strabo</creator><creator>Vegge, Tejs</creator><creator>Bligaard, Thomas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1484-0284</orcidid><orcidid>https://orcid.org/0000-0002-2032-8949</orcidid><orcidid>https://orcid.org/0000000214840284</orcidid><orcidid>https://orcid.org/0000000220328949</orcidid></search><sort><creationdate>20190410</creationdate><title>Genetic algorithms for computational materials discovery accelerated by machine learning</title><author>Jennings, Paul C. ; Lysgaard, Steen ; Hummelshøj, Jens Strabo ; Vegge, Tejs ; Bligaard, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1034/1037</topic><topic>639/638/563</topic><topic>639/925/357/354</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Binary alloys</topic><topic>Catalysts</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Computer applications</topic><topic>Datasets</topic><topic>Density functional theory</topic><topic>Genetic algorithms</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Search algorithms</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jennings, Paul C.</creatorcontrib><creatorcontrib>Lysgaard, Steen</creatorcontrib><creatorcontrib>Hummelshøj, Jens Strabo</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Bligaard, Thomas</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jennings, Paul C.</au><au>Lysgaard, Steen</au><au>Hummelshøj, Jens Strabo</au><au>Vegge, Tejs</au><au>Bligaard, Thomas</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic algorithms for computational materials discovery accelerated by machine learning</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2019-04-10</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><artnum>46</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy predictor before analyzing how to augment convergence in genetic algorithm-based approaches by using the model as a surrogate. This leads to a machine learning accelerated genetic algorithm combining robust qualities of the genetic algorithm with rapid machine learning. The approach is used to search for stable, compositionally variant, geometrically similar nanoparticle alloys to illustrate its capability for accelerated materials discovery, e.g., nanoalloy catalysts. The machine learning accelerated approach, in this case, yields a 50-fold reduction in the number of required energy calculations compared to a traditional “brute force” genetic algorithm. This makes searching through the space of all homotops and compositions of a binary alloy particle in a given structure feasible, using density functional theory calculations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-019-0181-4</doi><orcidid>https://orcid.org/0000-0002-1484-0284</orcidid><orcidid>https://orcid.org/0000-0002-2032-8949</orcidid><orcidid>https://orcid.org/0000000214840284</orcidid><orcidid>https://orcid.org/0000000220328949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2019-04, Vol.5 (1), Article 46
issn 2057-3960
2057-3960
language eng
recordid cdi_osti_scitechconnect_1511649
source Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1034/1037
639/638/563
639/925/357/354
Algorithms
Artificial intelligence
Binary alloys
Catalysts
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Computer applications
Datasets
Density functional theory
Genetic algorithms
Learning algorithms
Machine learning
MATERIALS SCIENCE
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Nanoalloys
Nanoparticles
Search algorithms
Theoretical
title Genetic algorithms for computational materials discovery accelerated by machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20algorithms%20for%20computational%20materials%20discovery%20accelerated%20by%20machine%20learning&rft.jtitle=npj%20computational%20materials&rft.au=Jennings,%20Paul%20C.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-04-10&rft.volume=5&rft.issue=1&rft.artnum=46&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-019-0181-4&rft_dat=%3Cproquest_osti_%3E2207142041%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-72268bea7c6eacac5dd52e0981799a5bd3897775554748ef26f5306aaa55a3593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2207142041&rft_id=info:pmid/&rfr_iscdi=true