Loading…
A high-accuracy Eulerian gyrokinetic solver for collisional plasmas
We describe here a new approach to solve the electromagnetic gyrokinetic equations which is optimized for accurate treatment of multispecies Fokker–Planck collisions including both pitch-angle and energy diffusion. The new algorithm is spectral/pseudospectral in four of the five phase space dimensio...
Saved in:
Published in: | Journal of computational physics 2016-08, Vol.324 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe here a new approach to solve the electromagnetic gyrokinetic equations which is optimized for accurate treatment of multispecies Fokker–Planck collisions including both pitch-angle and energy diffusion. The new algorithm is spectral/pseudospectral in four of the five phase space dimensions, and in the fieldline direction a novel 5th-order conservative upwind scheme is used to permit high-accuracy electromagnetic simulation even in the limit of very high plasma β and vanishingly small perpendicular wavenumber, k ⊥ → 0 . To our knowledge, this is the first pseudospectral implementation of the collision operator in a gyrokinetic code. We show that the new solver agrees closely with GYRO in the limit of weak Lorentz collisions, but gives a significantly more realistic description of collisions at high collision frequency. The numerical methods are also designed to be efficient and scalable for multiscale simulations that treat ion-scale and electron–scale turbulence simultaneously. |
---|---|
ISSN: | 0021-9991 |