Loading…

A 10‐node composite tetrahedral finite element for solid mechanics

Summary We propose a reformulation of the composite tetrahedral finite element first introduced by Thoutireddy et al. By choosing a different numerical integration scheme, we obtain an element that is more accurate than the one proposed in the original formulation. We also show that in the context o...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2016-09, Vol.107 (13), p.1145-1170
Main Authors: Ostien, J. T., Foulk, J. W., Mota, A., Veilleux, M. G.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1170
container_issue 13
container_start_page 1145
container_title International journal for numerical methods in engineering
container_volume 107
creator Ostien, J. T.
Foulk, J. W.
Mota, A.
Veilleux, M. G.
description Summary We propose a reformulation of the composite tetrahedral finite element first introduced by Thoutireddy et al. By choosing a different numerical integration scheme, we obtain an element that is more accurate than the one proposed in the original formulation. We also show that in the context of Lagrangian approaches, the gradient and projection operators derived from the element reformulation admit fully analytic expressions, which offer a significant improvement in terms of accuracy and computational expense. For plasticity applications, a mean‐dilatation approach on top of the underlying Hu–Washizu variational principle proves effective for the representation of isochoric deformations. The performance of the reformulated element is demonstrated by hyperelastic and inelastic calculations. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.5218
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1512889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835649936</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2118-45081d7aca0bef1b7fa7cfef9c33bb04620748437a4af2809ed455ead9f39b2f3</originalsourceid><addsrcrecordid>eNpdkE1OwzAQRi0EEqUgcYQINmxSPHFc28uqlB-pwAbWluOM1VSJXeJUqDuOwBk5Ca7KitUnzTyNvnmEXAKdAKXFre9wwguQR2QEVImcFlQck1FaqZwrCafkLMY1pQCcshG5m2VAf76-fagxs6HbhNgMmA049GaFdW_azDV-P8IWO_RD5kKfxdA2ddahXRnf2HhOTpxpI1785Zi83y_e5o_58vXhaT5b5qEAkHnJqYRaGGtohQ4q4YywDp2yjFUVLaepailLJkxpXCGpwrrkHE2tHFNV4diYXB3uhjg0OtpUy65s8B7toIFDIaVK0M0B2vThY4tx0F0TLbat8Ri2UYNkfFoqxaYJvf6HrsO29-mFRAEXgkrBEpUfqM-mxZ3e9E1n-p0GqvfCdRKu98L1y_Nin-wXI2h0Tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815770873</pqid></control><display><type>article</type><title>A 10‐node composite tetrahedral finite element for solid mechanics</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ostien, J. T. ; Foulk, J. W. ; Mota, A. ; Veilleux, M. G.</creator><creatorcontrib>Ostien, J. T. ; Foulk, J. W. ; Mota, A. ; Veilleux, M. G. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>Summary We propose a reformulation of the composite tetrahedral finite element first introduced by Thoutireddy et al. By choosing a different numerical integration scheme, we obtain an element that is more accurate than the one proposed in the original formulation. We also show that in the context of Lagrangian approaches, the gradient and projection operators derived from the element reformulation admit fully analytic expressions, which offer a significant improvement in terms of accuracy and computational expense. For plasticity applications, a mean‐dilatation approach on top of the underlying Hu–Washizu variational principle proves effective for the representation of isochoric deformations. The performance of the reformulated element is demonstrated by hyperelastic and inelastic calculations. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5218</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Deformation effects ; ENGINEERING ; Exact solutions ; Finite element method ; Hu‐Washizu ; MATERIALS SCIENCE ; Mathematical analysis ; mixed formulation ; Plasticity ; Representations ; Solid mechanics ; tetrahedron ; Variational principles</subject><ispartof>International journal for numerical methods in engineering, 2016-09, Vol.107 (13), p.1145-1170</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1512889$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostien, J. T.</creatorcontrib><creatorcontrib>Foulk, J. W.</creatorcontrib><creatorcontrib>Mota, A.</creatorcontrib><creatorcontrib>Veilleux, M. G.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>A 10‐node composite tetrahedral finite element for solid mechanics</title><title>International journal for numerical methods in engineering</title><description>Summary We propose a reformulation of the composite tetrahedral finite element first introduced by Thoutireddy et al. By choosing a different numerical integration scheme, we obtain an element that is more accurate than the one proposed in the original formulation. We also show that in the context of Lagrangian approaches, the gradient and projection operators derived from the element reformulation admit fully analytic expressions, which offer a significant improvement in terms of accuracy and computational expense. For plasticity applications, a mean‐dilatation approach on top of the underlying Hu–Washizu variational principle proves effective for the representation of isochoric deformations. The performance of the reformulated element is demonstrated by hyperelastic and inelastic calculations. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Deformation effects</subject><subject>ENGINEERING</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Hu‐Washizu</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>mixed formulation</subject><subject>Plasticity</subject><subject>Representations</subject><subject>Solid mechanics</subject><subject>tetrahedron</subject><subject>Variational principles</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1OwzAQRi0EEqUgcYQINmxSPHFc28uqlB-pwAbWluOM1VSJXeJUqDuOwBk5Ca7KitUnzTyNvnmEXAKdAKXFre9wwguQR2QEVImcFlQck1FaqZwrCafkLMY1pQCcshG5m2VAf76-fagxs6HbhNgMmA049GaFdW_azDV-P8IWO_RD5kKfxdA2ddahXRnf2HhOTpxpI1785Zi83y_e5o_58vXhaT5b5qEAkHnJqYRaGGtohQ4q4YywDp2yjFUVLaepailLJkxpXCGpwrrkHE2tHFNV4diYXB3uhjg0OtpUy65s8B7toIFDIaVK0M0B2vThY4tx0F0TLbat8Ri2UYNkfFoqxaYJvf6HrsO29-mFRAEXgkrBEpUfqM-mxZ3e9E1n-p0GqvfCdRKu98L1y_Nin-wXI2h0Tw</recordid><startdate>20160928</startdate><enddate>20160928</enddate><creator>Ostien, J. T.</creator><creator>Foulk, J. W.</creator><creator>Mota, A.</creator><creator>Veilleux, M. G.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160928</creationdate><title>A 10‐node composite tetrahedral finite element for solid mechanics</title><author>Ostien, J. T. ; Foulk, J. W. ; Mota, A. ; Veilleux, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2118-45081d7aca0bef1b7fa7cfef9c33bb04620748437a4af2809ed455ead9f39b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Deformation effects</topic><topic>ENGINEERING</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Hu‐Washizu</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>mixed formulation</topic><topic>Plasticity</topic><topic>Representations</topic><topic>Solid mechanics</topic><topic>tetrahedron</topic><topic>Variational principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostien, J. T.</creatorcontrib><creatorcontrib>Foulk, J. W.</creatorcontrib><creatorcontrib>Mota, A.</creatorcontrib><creatorcontrib>Veilleux, M. G.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostien, J. T.</au><au>Foulk, J. W.</au><au>Mota, A.</au><au>Veilleux, M. G.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 10‐node composite tetrahedral finite element for solid mechanics</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2016-09-28</date><risdate>2016</risdate><volume>107</volume><issue>13</issue><spage>1145</spage><epage>1170</epage><pages>1145-1170</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Summary We propose a reformulation of the composite tetrahedral finite element first introduced by Thoutireddy et al. By choosing a different numerical integration scheme, we obtain an element that is more accurate than the one proposed in the original formulation. We also show that in the context of Lagrangian approaches, the gradient and projection operators derived from the element reformulation admit fully analytic expressions, which offer a significant improvement in terms of accuracy and computational expense. For plasticity applications, a mean‐dilatation approach on top of the underlying Hu–Washizu variational principle proves effective for the representation of isochoric deformations. The performance of the reformulated element is demonstrated by hyperelastic and inelastic calculations. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5218</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2016-09, Vol.107 (13), p.1145-1170
issn 0029-5981
1097-0207
language eng
recordid cdi_osti_scitechconnect_1512889
source Wiley-Blackwell Read & Publish Collection
subjects Deformation effects
ENGINEERING
Exact solutions
Finite element method
Hu‐Washizu
MATERIALS SCIENCE
Mathematical analysis
mixed formulation
Plasticity
Representations
Solid mechanics
tetrahedron
Variational principles
title A 10‐node composite tetrahedral finite element for solid mechanics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2010%E2%80%90node%20composite%20tetrahedral%20finite%20element%20for%20solid%20mechanics&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Ostien,%20J.%20T.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2016-09-28&rft.volume=107&rft.issue=13&rft.spage=1145&rft.epage=1170&rft.pages=1145-1170&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.5218&rft_dat=%3Cproquest_osti_%3E1835649936%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o2118-45081d7aca0bef1b7fa7cfef9c33bb04620748437a4af2809ed455ead9f39b2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1815770873&rft_id=info:pmid/&rfr_iscdi=true