Loading…
A 10‐node composite tetrahedral finite element for solid mechanics
Summary We propose a reformulation of the composite tetrahedral finite element first introduced by Thoutireddy et al. By choosing a different numerical integration scheme, we obtain an element that is more accurate than the one proposed in the original formulation. We also show that in the context o...
Saved in:
Published in: | International journal for numerical methods in engineering 2016-09, Vol.107 (13), p.1145-1170 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1170 |
container_issue | 13 |
container_start_page | 1145 |
container_title | International journal for numerical methods in engineering |
container_volume | 107 |
creator | Ostien, J. T. Foulk, J. W. Mota, A. Veilleux, M. G. |
description | Summary
We propose a reformulation of the composite tetrahedral finite element first introduced by Thoutireddy et al. By choosing a different numerical integration scheme, we obtain an element that is more accurate than the one proposed in the original formulation. We also show that in the context of Lagrangian approaches, the gradient and projection operators derived from the element reformulation admit fully analytic expressions, which offer a significant improvement in terms of accuracy and computational expense. For plasticity applications, a mean‐dilatation approach on top of the underlying Hu–Washizu variational principle proves effective for the representation of isochoric deformations. The performance of the reformulated element is demonstrated by hyperelastic and inelastic calculations. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.5218 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1512889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835649936</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2118-45081d7aca0bef1b7fa7cfef9c33bb04620748437a4af2809ed455ead9f39b2f3</originalsourceid><addsrcrecordid>eNpdkE1OwzAQRi0EEqUgcYQINmxSPHFc28uqlB-pwAbWluOM1VSJXeJUqDuOwBk5Ca7KitUnzTyNvnmEXAKdAKXFre9wwguQR2QEVImcFlQck1FaqZwrCafkLMY1pQCcshG5m2VAf76-fagxs6HbhNgMmA049GaFdW_azDV-P8IWO_RD5kKfxdA2ddahXRnf2HhOTpxpI1785Zi83y_e5o_58vXhaT5b5qEAkHnJqYRaGGtohQ4q4YywDp2yjFUVLaepailLJkxpXCGpwrrkHE2tHFNV4diYXB3uhjg0OtpUy65s8B7toIFDIaVK0M0B2vThY4tx0F0TLbat8Ri2UYNkfFoqxaYJvf6HrsO29-mFRAEXgkrBEpUfqM-mxZ3e9E1n-p0GqvfCdRKu98L1y_Nin-wXI2h0Tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815770873</pqid></control><display><type>article</type><title>A 10‐node composite tetrahedral finite element for solid mechanics</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Ostien, J. T. ; Foulk, J. W. ; Mota, A. ; Veilleux, M. G.</creator><creatorcontrib>Ostien, J. T. ; Foulk, J. W. ; Mota, A. ; Veilleux, M. G. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>Summary
We propose a reformulation of the composite tetrahedral finite element first introduced by Thoutireddy et al. By choosing a different numerical integration scheme, we obtain an element that is more accurate than the one proposed in the original formulation. We also show that in the context of Lagrangian approaches, the gradient and projection operators derived from the element reformulation admit fully analytic expressions, which offer a significant improvement in terms of accuracy and computational expense. For plasticity applications, a mean‐dilatation approach on top of the underlying Hu–Washizu variational principle proves effective for the representation of isochoric deformations. The performance of the reformulated element is demonstrated by hyperelastic and inelastic calculations. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5218</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Deformation effects ; ENGINEERING ; Exact solutions ; Finite element method ; Hu‐Washizu ; MATERIALS SCIENCE ; Mathematical analysis ; mixed formulation ; Plasticity ; Representations ; Solid mechanics ; tetrahedron ; Variational principles</subject><ispartof>International journal for numerical methods in engineering, 2016-09, Vol.107 (13), p.1145-1170</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1512889$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostien, J. T.</creatorcontrib><creatorcontrib>Foulk, J. W.</creatorcontrib><creatorcontrib>Mota, A.</creatorcontrib><creatorcontrib>Veilleux, M. G.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>A 10‐node composite tetrahedral finite element for solid mechanics</title><title>International journal for numerical methods in engineering</title><description>Summary
We propose a reformulation of the composite tetrahedral finite element first introduced by Thoutireddy et al. By choosing a different numerical integration scheme, we obtain an element that is more accurate than the one proposed in the original formulation. We also show that in the context of Lagrangian approaches, the gradient and projection operators derived from the element reformulation admit fully analytic expressions, which offer a significant improvement in terms of accuracy and computational expense. For plasticity applications, a mean‐dilatation approach on top of the underlying Hu–Washizu variational principle proves effective for the representation of isochoric deformations. The performance of the reformulated element is demonstrated by hyperelastic and inelastic calculations. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>Deformation effects</subject><subject>ENGINEERING</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Hu‐Washizu</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>mixed formulation</subject><subject>Plasticity</subject><subject>Representations</subject><subject>Solid mechanics</subject><subject>tetrahedron</subject><subject>Variational principles</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1OwzAQRi0EEqUgcYQINmxSPHFc28uqlB-pwAbWluOM1VSJXeJUqDuOwBk5Ca7KitUnzTyNvnmEXAKdAKXFre9wwguQR2QEVImcFlQck1FaqZwrCafkLMY1pQCcshG5m2VAf76-fagxs6HbhNgMmA049GaFdW_azDV-P8IWO_RD5kKfxdA2ddahXRnf2HhOTpxpI1785Zi83y_e5o_58vXhaT5b5qEAkHnJqYRaGGtohQ4q4YywDp2yjFUVLaepailLJkxpXCGpwrrkHE2tHFNV4diYXB3uhjg0OtpUy65s8B7toIFDIaVK0M0B2vThY4tx0F0TLbat8Ri2UYNkfFoqxaYJvf6HrsO29-mFRAEXgkrBEpUfqM-mxZ3e9E1n-p0GqvfCdRKu98L1y_Nin-wXI2h0Tw</recordid><startdate>20160928</startdate><enddate>20160928</enddate><creator>Ostien, J. T.</creator><creator>Foulk, J. W.</creator><creator>Mota, A.</creator><creator>Veilleux, M. G.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160928</creationdate><title>A 10‐node composite tetrahedral finite element for solid mechanics</title><author>Ostien, J. T. ; Foulk, J. W. ; Mota, A. ; Veilleux, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2118-45081d7aca0bef1b7fa7cfef9c33bb04620748437a4af2809ed455ead9f39b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Deformation effects</topic><topic>ENGINEERING</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Hu‐Washizu</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>mixed formulation</topic><topic>Plasticity</topic><topic>Representations</topic><topic>Solid mechanics</topic><topic>tetrahedron</topic><topic>Variational principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostien, J. T.</creatorcontrib><creatorcontrib>Foulk, J. W.</creatorcontrib><creatorcontrib>Mota, A.</creatorcontrib><creatorcontrib>Veilleux, M. G.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostien, J. T.</au><au>Foulk, J. W.</au><au>Mota, A.</au><au>Veilleux, M. G.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 10‐node composite tetrahedral finite element for solid mechanics</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2016-09-28</date><risdate>2016</risdate><volume>107</volume><issue>13</issue><spage>1145</spage><epage>1170</epage><pages>1145-1170</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Summary
We propose a reformulation of the composite tetrahedral finite element first introduced by Thoutireddy et al. By choosing a different numerical integration scheme, we obtain an element that is more accurate than the one proposed in the original formulation. We also show that in the context of Lagrangian approaches, the gradient and projection operators derived from the element reformulation admit fully analytic expressions, which offer a significant improvement in terms of accuracy and computational expense. For plasticity applications, a mean‐dilatation approach on top of the underlying Hu–Washizu variational principle proves effective for the representation of isochoric deformations. The performance of the reformulated element is demonstrated by hyperelastic and inelastic calculations. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5218</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2016-09, Vol.107 (13), p.1145-1170 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_osti_scitechconnect_1512889 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Deformation effects ENGINEERING Exact solutions Finite element method Hu‐Washizu MATERIALS SCIENCE Mathematical analysis mixed formulation Plasticity Representations Solid mechanics tetrahedron Variational principles |
title | A 10‐node composite tetrahedral finite element for solid mechanics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2010%E2%80%90node%20composite%20tetrahedral%20finite%20element%20for%20solid%20mechanics&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Ostien,%20J.%20T.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2016-09-28&rft.volume=107&rft.issue=13&rft.spage=1145&rft.epage=1170&rft.pages=1145-1170&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.5218&rft_dat=%3Cproquest_osti_%3E1835649936%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o2118-45081d7aca0bef1b7fa7cfef9c33bb04620748437a4af2809ed455ead9f39b2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1815770873&rft_id=info:pmid/&rfr_iscdi=true |