Loading…

Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V

The build-up of residual stresses in a part during laser powder bed fusion provides a significant limitation to the adoption of this process. These residuals stresses may cause a part to fail during a build or fall outside the specified tolerances after fabrication. In the present work a thermomecha...

Full description

Saved in:
Bibliographic Details
Published in:Additive manufacturing 2019-05, Vol.27 (C), p.489-502
Main Authors: Ganeriwala, R.K., Strantza, M., King, W.E., Clausen, B., Phan, T.Q., Levine, L.E., Brown, D.W., Hodge, N.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-323bb508335baf88445da0cf233f7c163ecdd8ceea0df38b20289a882e83ba253
cites cdi_FETCH-LOGICAL-c375t-323bb508335baf88445da0cf233f7c163ecdd8ceea0df38b20289a882e83ba253
container_end_page 502
container_issue C
container_start_page 489
container_title Additive manufacturing
container_volume 27
creator Ganeriwala, R.K.
Strantza, M.
King, W.E.
Clausen, B.
Phan, T.Q.
Levine, L.E.
Brown, D.W.
Hodge, N.E.
description The build-up of residual stresses in a part during laser powder bed fusion provides a significant limitation to the adoption of this process. These residuals stresses may cause a part to fail during a build or fall outside the specified tolerances after fabrication. In the present work a thermomechanical model is used to simulate the build process and calculate the residual stress state for Ti–6Al–4V specimens built with continuous and island scan strategies. A layer agglomeration, or lumping, approach is used to speed up the computations. A material model is developed to naturally capture the strain-rate dependence and annealing behavior of Ti–6Al–4V at elevated temperatures. Results from the thermomechanical simulations showed good agreement with synchrotron X-ray diffraction measurements used to determine the residual elastic strains in these parts. However, the experimental measurements showed higher residual strains for the specimen built with an island scan strategy; a trend not fully captured by the simulations. Parameter studies were performed to fully understand the advantages and limitations of the current simulation methodology. Reasons for both the computational and experimental findings are discussed.
doi_str_mv 10.1016/j.addma.2019.03.034
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1514805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214860418308741</els_id><sourcerecordid>S2214860418308741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-323bb508335baf88445da0cf233f7c163ecdd8ceea0df38b20289a882e83ba253</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEhX0F3CxuCf4lcQ9cKiq8pAqcSlcLcdeU1dJXNlJEf8eh5Yr0kqzh29Gu5NldwQXBJPqYV8oYzpVUEwWBWZp-EU2o5TwvBYEX553UWF-nc1j3GOMScnqhaCzbFgfVTuqwfkeeYsUGnYQOt-B3qneadWizhtokfUBHQIYp__QANGZMQFxSGtEZgyu_0StipBQ_2WSNGCQHePZsXV5tWxz_nGbXVnVRpif9SZ7f1pvVy_55u35dbXc5JrV5ZAzypqmxIKxslFWCM5Lo7C2lDFba1Ix0MYIDaCwsUw0FFOxUEJQEKxRtGQ32f0p18fByajdkN7Svu9BD5KUhAs8QewE6eBjDGDlIbhOhW9JsJwKlnv5W7CcCpaYpeHJ9XhyQbr_6CBM8dDr1FCY0o13__p_ACakhaY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>ScienceDirect®</source><creator>Ganeriwala, R.K. ; Strantza, M. ; King, W.E. ; Clausen, B. ; Phan, T.Q. ; Levine, L.E. ; Brown, D.W. ; Hodge, N.E.</creator><creatorcontrib>Ganeriwala, R.K. ; Strantza, M. ; King, W.E. ; Clausen, B. ; Phan, T.Q. ; Levine, L.E. ; Brown, D.W. ; Hodge, N.E. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The build-up of residual stresses in a part during laser powder bed fusion provides a significant limitation to the adoption of this process. These residuals stresses may cause a part to fail during a build or fall outside the specified tolerances after fabrication. In the present work a thermomechanical model is used to simulate the build process and calculate the residual stress state for Ti–6Al–4V specimens built with continuous and island scan strategies. A layer agglomeration, or lumping, approach is used to speed up the computations. A material model is developed to naturally capture the strain-rate dependence and annealing behavior of Ti–6Al–4V at elevated temperatures. Results from the thermomechanical simulations showed good agreement with synchrotron X-ray diffraction measurements used to determine the residual elastic strains in these parts. However, the experimental measurements showed higher residual strains for the specimen built with an island scan strategy; a trend not fully captured by the simulations. Parameter studies were performed to fully understand the advantages and limitations of the current simulation methodology. Reasons for both the computational and experimental findings are discussed.</description><identifier>ISSN: 2214-8604</identifier><identifier>EISSN: 2214-7810</identifier><identifier>DOI: 10.1016/j.addma.2019.03.034</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Additive manufacturing ; ENGINEERING ; Laser powder bed fusion ; MATERIALS SCIENCE ; MATHEMATICS AND COMPUTING ; Residual stress ; Thermomechanical modeling ; Ti–6Al–4V</subject><ispartof>Additive manufacturing, 2019-05, Vol.27 (C), p.489-502</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-323bb508335baf88445da0cf233f7c163ecdd8ceea0df38b20289a882e83ba253</citedby><cites>FETCH-LOGICAL-c375t-323bb508335baf88445da0cf233f7c163ecdd8ceea0df38b20289a882e83ba253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214860418308741$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1514805$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganeriwala, R.K.</creatorcontrib><creatorcontrib>Strantza, M.</creatorcontrib><creatorcontrib>King, W.E.</creatorcontrib><creatorcontrib>Clausen, B.</creatorcontrib><creatorcontrib>Phan, T.Q.</creatorcontrib><creatorcontrib>Levine, L.E.</creatorcontrib><creatorcontrib>Brown, D.W.</creatorcontrib><creatorcontrib>Hodge, N.E.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V</title><title>Additive manufacturing</title><description>The build-up of residual stresses in a part during laser powder bed fusion provides a significant limitation to the adoption of this process. These residuals stresses may cause a part to fail during a build or fall outside the specified tolerances after fabrication. In the present work a thermomechanical model is used to simulate the build process and calculate the residual stress state for Ti–6Al–4V specimens built with continuous and island scan strategies. A layer agglomeration, or lumping, approach is used to speed up the computations. A material model is developed to naturally capture the strain-rate dependence and annealing behavior of Ti–6Al–4V at elevated temperatures. Results from the thermomechanical simulations showed good agreement with synchrotron X-ray diffraction measurements used to determine the residual elastic strains in these parts. However, the experimental measurements showed higher residual strains for the specimen built with an island scan strategy; a trend not fully captured by the simulations. Parameter studies were performed to fully understand the advantages and limitations of the current simulation methodology. Reasons for both the computational and experimental findings are discussed.</description><subject>Additive manufacturing</subject><subject>ENGINEERING</subject><subject>Laser powder bed fusion</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Residual stress</subject><subject>Thermomechanical modeling</subject><subject>Ti–6Al–4V</subject><issn>2214-8604</issn><issn>2214-7810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEhX0F3CxuCf4lcQ9cKiq8pAqcSlcLcdeU1dJXNlJEf8eh5Yr0kqzh29Gu5NldwQXBJPqYV8oYzpVUEwWBWZp-EU2o5TwvBYEX553UWF-nc1j3GOMScnqhaCzbFgfVTuqwfkeeYsUGnYQOt-B3qneadWizhtokfUBHQIYp__QANGZMQFxSGtEZgyu_0StipBQ_2WSNGCQHePZsXV5tWxz_nGbXVnVRpif9SZ7f1pvVy_55u35dbXc5JrV5ZAzypqmxIKxslFWCM5Lo7C2lDFba1Ix0MYIDaCwsUw0FFOxUEJQEKxRtGQ32f0p18fByajdkN7Svu9BD5KUhAs8QewE6eBjDGDlIbhOhW9JsJwKlnv5W7CcCpaYpeHJ9XhyQbr_6CBM8dDr1FCY0o13__p_ACakhaY</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Ganeriwala, R.K.</creator><creator>Strantza, M.</creator><creator>King, W.E.</creator><creator>Clausen, B.</creator><creator>Phan, T.Q.</creator><creator>Levine, L.E.</creator><creator>Brown, D.W.</creator><creator>Hodge, N.E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190501</creationdate><title>Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V</title><author>Ganeriwala, R.K. ; Strantza, M. ; King, W.E. ; Clausen, B. ; Phan, T.Q. ; Levine, L.E. ; Brown, D.W. ; Hodge, N.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-323bb508335baf88445da0cf233f7c163ecdd8ceea0df38b20289a882e83ba253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Additive manufacturing</topic><topic>ENGINEERING</topic><topic>Laser powder bed fusion</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Residual stress</topic><topic>Thermomechanical modeling</topic><topic>Ti–6Al–4V</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganeriwala, R.K.</creatorcontrib><creatorcontrib>Strantza, M.</creatorcontrib><creatorcontrib>King, W.E.</creatorcontrib><creatorcontrib>Clausen, B.</creatorcontrib><creatorcontrib>Phan, T.Q.</creatorcontrib><creatorcontrib>Levine, L.E.</creatorcontrib><creatorcontrib>Brown, D.W.</creatorcontrib><creatorcontrib>Hodge, N.E.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Additive manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganeriwala, R.K.</au><au>Strantza, M.</au><au>King, W.E.</au><au>Clausen, B.</au><au>Phan, T.Q.</au><au>Levine, L.E.</au><au>Brown, D.W.</au><au>Hodge, N.E.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V</atitle><jtitle>Additive manufacturing</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>27</volume><issue>C</issue><spage>489</spage><epage>502</epage><pages>489-502</pages><issn>2214-8604</issn><eissn>2214-7810</eissn><abstract>The build-up of residual stresses in a part during laser powder bed fusion provides a significant limitation to the adoption of this process. These residuals stresses may cause a part to fail during a build or fall outside the specified tolerances after fabrication. In the present work a thermomechanical model is used to simulate the build process and calculate the residual stress state for Ti–6Al–4V specimens built with continuous and island scan strategies. A layer agglomeration, or lumping, approach is used to speed up the computations. A material model is developed to naturally capture the strain-rate dependence and annealing behavior of Ti–6Al–4V at elevated temperatures. Results from the thermomechanical simulations showed good agreement with synchrotron X-ray diffraction measurements used to determine the residual elastic strains in these parts. However, the experimental measurements showed higher residual strains for the specimen built with an island scan strategy; a trend not fully captured by the simulations. Parameter studies were performed to fully understand the advantages and limitations of the current simulation methodology. Reasons for both the computational and experimental findings are discussed.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.addma.2019.03.034</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-8604
ispartof Additive manufacturing, 2019-05, Vol.27 (C), p.489-502
issn 2214-8604
2214-7810
language eng
recordid cdi_osti_scitechconnect_1514805
source ScienceDirect Freedom Collection 2022-2024; ScienceDirect®
subjects Additive manufacturing
ENGINEERING
Laser powder bed fusion
MATERIALS SCIENCE
MATHEMATICS AND COMPUTING
Residual stress
Thermomechanical modeling
Ti–6Al–4V
title Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20a%20thermomechanical%20model%20for%20prediction%20of%20residual%20stress%20during%20laser%20powder%20bed%20fusion%20of%20Ti-6Al-4V&rft.jtitle=Additive%20manufacturing&rft.au=Ganeriwala,%20R.K.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2019-05-01&rft.volume=27&rft.issue=C&rft.spage=489&rft.epage=502&rft.pages=489-502&rft.issn=2214-8604&rft.eissn=2214-7810&rft_id=info:doi/10.1016/j.addma.2019.03.034&rft_dat=%3Celsevier_osti_%3ES2214860418308741%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-323bb508335baf88445da0cf233f7c163ecdd8ceea0df38b20289a882e83ba253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true