Loading…
Predicting impacts of chemicals from organisms to ecosystem service delivery: A case study of insecticide impacts on a freshwater lake
Assessing and managing risks of anthropogenic activities to ecological systems is necessary to ensure sustained delivery of ecosystem services for future generations. Ecological models provide a means of quantitatively linking measured risk assessment endpoints with protection goals, by integrating...
Saved in:
Published in: | The Science of the total environment 2019-09, Vol.682 (C), p.426-436 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Assessing and managing risks of anthropogenic activities to ecological systems is necessary to ensure sustained delivery of ecosystem services for future generations. Ecological models provide a means of quantitatively linking measured risk assessment endpoints with protection goals, by integrating potential chemical effects with species life history, ecological interactions, environmental drivers and other potential stressors. Here we demonstrate how an ecosystem modeling approach can be used to quantify insecticide-induced impacts on ecosystem services provided by a lake from toxicity data for organism-level endpoints. We used a publicly available aquatic ecosystem model AQUATOX that integrates environmental fate of chemicals and their impacts on food webs in aquatic environments. By simulating a range of exposure patterns, we illustrated how exposure to a hypothetical insecticide could affect aquatic species populations (e.g., recreational fish abundance) and environmental properties (e.g., water clarity) that would in turn affect delivery of ecosystem services. Different results were observed for different species of fish, thus the decision to manage the use of the insecticide for ecosystem services derived by anglers depends upon the favored species of fish. In our hypothetical shallow reservoir, water clarity was mostly driven by changes in food web dynamics, specifically the presence of zooplankton. In contrast to the complex response by fishing value, water clarity increased with reduced insecticide use, which produced a monotonic increase in value by waders and swimmers. Our study clearly showed the importance of considering nonlinear ecosystem feedbacks where the presence of insecticide changed the modeled food-web dynamics in unexpected ways. Our study highlights one of the main advantages of using ecological models for risk assessment, namely the ability to generalize to meaningful levels of organization and to facilitate quantitative comparisons among alternative scenarios and associated trade-offs among them while explicitly accounting for different groups of beneficiaries.
[Display omitted]
•Impacts of a hypothetical insecticide on ecosystem services provided by a lake were modeled.•Complex response of fishing services due to non-linear feedbacks in the lake food web•Water clarity increased with reduced insecticide use → increase in value by waders and swimmers.•Models can generalize to meaningful endpoints and facilitate quantitative scenar |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2019.05.187 |