Loading…
Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis
Development of polymer based mid-wavelength infrared (MWIR) optics has been limited mainly due to high optical loss of organic polymers used in general optical components. In this study, a MWIR polarization grating based on a sulfuric polymer poly(sulfur-random-(1,3-diisopropenylbenzene)) with a low...
Saved in:
Published in: | Polymer (Guilford) 2019-08, Vol.176 (C), p.118-126 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3 |
container_end_page | 126 |
container_issue | C |
container_start_page | 118 |
container_title | Polymer (Guilford) |
container_volume | 176 |
creator | Berndt, Aaron J. Hwang, Jehwan Islam, Md Didarul Sihn, Amy Urbas, Augustine M. Ku, Zahyun Lee, Sang Jun Czaplewski, David A. Dong, Mengyao Shao, Qian Wu, Shide Guo, Zhanhu Ryu, Jong Eun |
description | Development of polymer based mid-wavelength infrared (MWIR) optics has been limited mainly due to high optical loss of organic polymers used in general optical components. In this study, a MWIR polarization grating based on a sulfuric polymer poly(sulfur-random-(1,3-diisopropenylbenzene)) with a low loss in the MWIR range was fabricated using a simple two-step process: imprint and metal deposition. Fourier-transform infrared (FTIR) spectroscopy measurement showed that this polymeric MWIR polarizer selectively transmitted the polarized IR in transverse magnetic (TM) mode over the transverse electric (TE) mode at normal incidence. The measured extinction ratios (η = The ratio of transmissions in TM and TE) were 208, 176, and 212 at the wavelength of 3, 4, and 5 μm, respectively. The computational simulation and analytical model confirmed that the enhanced TM transmission efficiency and η followed a Fabry-Pérot (FP) resonance mode within the created sulfuric polymer film. This polymeric MWIR polarizer demonstrated a great potential for broader applications in IR photonics to realize low-cost and durable optical components.
[Display omitted]
•The first polymer-based mid-wavelength infrared linear polarizer was built with sulfuric polymer film.•Current mid-wavelength infrared polarizer optical elements are based on expensive and fragile inorganic materials.•Transmission and extinction ratio are comparable to commercial products.•Both computational simulation and analytical model confirmed the enhanced transmission efficiency and extinction ratio.•Advantages of the polymeric material allow low-cost and scalable manufacturing. |
doi_str_mv | 10.1016/j.polymer.2019.05.036 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1524627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386119304501</els_id><sourcerecordid>2273189349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCVWFp-AlIEl1Zqgj8SJ-ZSoap8SJXKAc6W40xYr7J2sL2l6Y_ob2aW9M5ppJn3Zt6bR8hbRitGmfywq-YwLXuIFadMVbSpqJAvyIZ1rSg5V-wl2VAqeCk6yV6R1yntKKW84fWGPH1H6nk6TOMhltH4IezLc3YpysG5FOYYZvDL1IN_BA8XF0VvEgzF3g3lH3MPE_hfeVs4P0YTsY86THSPED8Wd3N21kzFvxUxLwU8YHV78Bm7eKjIWwgRVpTxZlqSS2fkZDRTgjfP9ZT8_Hzz4_preXv35dv1p9vS1nWXSyWkEJJ2HfQD7dAaG8Eq1qpW8VaNjQVL-7rno1SmHZngUnb4DAmmlUMNgzgl79a9IWWnk3UZ7NYG78FmzfAzkrcIer-C0MPvA6Ssd-EQUWnSHMesU6JWiGpWlI0hpQijntGmiYtmVB_z0Tv9nI8-5qNpozEf5F2tPECf9w6nKAO8hcHFo4ohuP9s-AvM2J5f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273189349</pqid></control><display><type>article</type><title>Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis</title><source>ScienceDirect Journals</source><creator>Berndt, Aaron J. ; Hwang, Jehwan ; Islam, Md Didarul ; Sihn, Amy ; Urbas, Augustine M. ; Ku, Zahyun ; Lee, Sang Jun ; Czaplewski, David A. ; Dong, Mengyao ; Shao, Qian ; Wu, Shide ; Guo, Zhanhu ; Ryu, Jong Eun</creator><creatorcontrib>Berndt, Aaron J. ; Hwang, Jehwan ; Islam, Md Didarul ; Sihn, Amy ; Urbas, Augustine M. ; Ku, Zahyun ; Lee, Sang Jun ; Czaplewski, David A. ; Dong, Mengyao ; Shao, Qian ; Wu, Shide ; Guo, Zhanhu ; Ryu, Jong Eun ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Development of polymer based mid-wavelength infrared (MWIR) optics has been limited mainly due to high optical loss of organic polymers used in general optical components. In this study, a MWIR polarization grating based on a sulfuric polymer poly(sulfur-random-(1,3-diisopropenylbenzene)) with a low loss in the MWIR range was fabricated using a simple two-step process: imprint and metal deposition. Fourier-transform infrared (FTIR) spectroscopy measurement showed that this polymeric MWIR polarizer selectively transmitted the polarized IR in transverse magnetic (TM) mode over the transverse electric (TE) mode at normal incidence. The measured extinction ratios (η = The ratio of transmissions in TM and TE) were 208, 176, and 212 at the wavelength of 3, 4, and 5 μm, respectively. The computational simulation and analytical model confirmed that the enhanced TM transmission efficiency and η followed a Fabry-Pérot (FP) resonance mode within the created sulfuric polymer film. This polymeric MWIR polarizer demonstrated a great potential for broader applications in IR photonics to realize low-cost and durable optical components.
[Display omitted]
•The first polymer-based mid-wavelength infrared linear polarizer was built with sulfuric polymer film.•Current mid-wavelength infrared polarizer optical elements are based on expensive and fragile inorganic materials.•Transmission and extinction ratio are comparable to commercial products.•Both computational simulation and analytical model confirmed the enhanced transmission efficiency and extinction ratio.•Advantages of the polymeric material allow low-cost and scalable manufacturing.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2019.05.036</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computer applications ; Computer simulation ; ENGINEERING ; Fabry-pérot resonance ; Fourier transforms ; Infrared analysis ; Optical components ; Optical properties ; Optics ; Photonics ; Polarizer ; Polarizers ; Pollutant deposition ; Polymer films ; Polymers ; Sulfur ; Sulfur polymer ; Theoretical analysis ; Transmission efficiency ; Wavelength</subject><ispartof>Polymer (Guilford), 2019-08, Vol.176 (C), p.118-126</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3</citedby><cites>FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1524627$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Berndt, Aaron J.</creatorcontrib><creatorcontrib>Hwang, Jehwan</creatorcontrib><creatorcontrib>Islam, Md Didarul</creatorcontrib><creatorcontrib>Sihn, Amy</creatorcontrib><creatorcontrib>Urbas, Augustine M.</creatorcontrib><creatorcontrib>Ku, Zahyun</creatorcontrib><creatorcontrib>Lee, Sang Jun</creatorcontrib><creatorcontrib>Czaplewski, David A.</creatorcontrib><creatorcontrib>Dong, Mengyao</creatorcontrib><creatorcontrib>Shao, Qian</creatorcontrib><creatorcontrib>Wu, Shide</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><creatorcontrib>Ryu, Jong Eun</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis</title><title>Polymer (Guilford)</title><description>Development of polymer based mid-wavelength infrared (MWIR) optics has been limited mainly due to high optical loss of organic polymers used in general optical components. In this study, a MWIR polarization grating based on a sulfuric polymer poly(sulfur-random-(1,3-diisopropenylbenzene)) with a low loss in the MWIR range was fabricated using a simple two-step process: imprint and metal deposition. Fourier-transform infrared (FTIR) spectroscopy measurement showed that this polymeric MWIR polarizer selectively transmitted the polarized IR in transverse magnetic (TM) mode over the transverse electric (TE) mode at normal incidence. The measured extinction ratios (η = The ratio of transmissions in TM and TE) were 208, 176, and 212 at the wavelength of 3, 4, and 5 μm, respectively. The computational simulation and analytical model confirmed that the enhanced TM transmission efficiency and η followed a Fabry-Pérot (FP) resonance mode within the created sulfuric polymer film. This polymeric MWIR polarizer demonstrated a great potential for broader applications in IR photonics to realize low-cost and durable optical components.
[Display omitted]
•The first polymer-based mid-wavelength infrared linear polarizer was built with sulfuric polymer film.•Current mid-wavelength infrared polarizer optical elements are based on expensive and fragile inorganic materials.•Transmission and extinction ratio are comparable to commercial products.•Both computational simulation and analytical model confirmed the enhanced transmission efficiency and extinction ratio.•Advantages of the polymeric material allow low-cost and scalable manufacturing.</description><subject>Computer applications</subject><subject>Computer simulation</subject><subject>ENGINEERING</subject><subject>Fabry-pérot resonance</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Optical components</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Photonics</subject><subject>Polarizer</subject><subject>Polarizers</subject><subject>Pollutant deposition</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Sulfur</subject><subject>Sulfur polymer</subject><subject>Theoretical analysis</subject><subject>Transmission efficiency</subject><subject>Wavelength</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v1DAQtRCVWFp-AlIEl1Zqgj8SJ-ZSoap8SJXKAc6W40xYr7J2sL2l6Y_ob2aW9M5ppJn3Zt6bR8hbRitGmfywq-YwLXuIFadMVbSpqJAvyIZ1rSg5V-wl2VAqeCk6yV6R1yntKKW84fWGPH1H6nk6TOMhltH4IezLc3YpysG5FOYYZvDL1IN_BA8XF0VvEgzF3g3lH3MPE_hfeVs4P0YTsY86THSPED8Wd3N21kzFvxUxLwU8YHV78Bm7eKjIWwgRVpTxZlqSS2fkZDRTgjfP9ZT8_Hzz4_preXv35dv1p9vS1nWXSyWkEJJ2HfQD7dAaG8Eq1qpW8VaNjQVL-7rno1SmHZngUnb4DAmmlUMNgzgl79a9IWWnk3UZ7NYG78FmzfAzkrcIer-C0MPvA6Ssd-EQUWnSHMesU6JWiGpWlI0hpQijntGmiYtmVB_z0Tv9nI8-5qNpozEf5F2tPECf9w6nKAO8hcHFo4ohuP9s-AvM2J5f</recordid><startdate>20190802</startdate><enddate>20190802</enddate><creator>Berndt, Aaron J.</creator><creator>Hwang, Jehwan</creator><creator>Islam, Md Didarul</creator><creator>Sihn, Amy</creator><creator>Urbas, Augustine M.</creator><creator>Ku, Zahyun</creator><creator>Lee, Sang Jun</creator><creator>Czaplewski, David A.</creator><creator>Dong, Mengyao</creator><creator>Shao, Qian</creator><creator>Wu, Shide</creator><creator>Guo, Zhanhu</creator><creator>Ryu, Jong Eun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190802</creationdate><title>Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis</title><author>Berndt, Aaron J. ; Hwang, Jehwan ; Islam, Md Didarul ; Sihn, Amy ; Urbas, Augustine M. ; Ku, Zahyun ; Lee, Sang Jun ; Czaplewski, David A. ; Dong, Mengyao ; Shao, Qian ; Wu, Shide ; Guo, Zhanhu ; Ryu, Jong Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer applications</topic><topic>Computer simulation</topic><topic>ENGINEERING</topic><topic>Fabry-pérot resonance</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Optical components</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Photonics</topic><topic>Polarizer</topic><topic>Polarizers</topic><topic>Pollutant deposition</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Sulfur</topic><topic>Sulfur polymer</topic><topic>Theoretical analysis</topic><topic>Transmission efficiency</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berndt, Aaron J.</creatorcontrib><creatorcontrib>Hwang, Jehwan</creatorcontrib><creatorcontrib>Islam, Md Didarul</creatorcontrib><creatorcontrib>Sihn, Amy</creatorcontrib><creatorcontrib>Urbas, Augustine M.</creatorcontrib><creatorcontrib>Ku, Zahyun</creatorcontrib><creatorcontrib>Lee, Sang Jun</creatorcontrib><creatorcontrib>Czaplewski, David A.</creatorcontrib><creatorcontrib>Dong, Mengyao</creatorcontrib><creatorcontrib>Shao, Qian</creatorcontrib><creatorcontrib>Wu, Shide</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><creatorcontrib>Ryu, Jong Eun</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berndt, Aaron J.</au><au>Hwang, Jehwan</au><au>Islam, Md Didarul</au><au>Sihn, Amy</au><au>Urbas, Augustine M.</au><au>Ku, Zahyun</au><au>Lee, Sang Jun</au><au>Czaplewski, David A.</au><au>Dong, Mengyao</au><au>Shao, Qian</au><au>Wu, Shide</au><au>Guo, Zhanhu</au><au>Ryu, Jong Eun</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis</atitle><jtitle>Polymer (Guilford)</jtitle><date>2019-08-02</date><risdate>2019</risdate><volume>176</volume><issue>C</issue><spage>118</spage><epage>126</epage><pages>118-126</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Development of polymer based mid-wavelength infrared (MWIR) optics has been limited mainly due to high optical loss of organic polymers used in general optical components. In this study, a MWIR polarization grating based on a sulfuric polymer poly(sulfur-random-(1,3-diisopropenylbenzene)) with a low loss in the MWIR range was fabricated using a simple two-step process: imprint and metal deposition. Fourier-transform infrared (FTIR) spectroscopy measurement showed that this polymeric MWIR polarizer selectively transmitted the polarized IR in transverse magnetic (TM) mode over the transverse electric (TE) mode at normal incidence. The measured extinction ratios (η = The ratio of transmissions in TM and TE) were 208, 176, and 212 at the wavelength of 3, 4, and 5 μm, respectively. The computational simulation and analytical model confirmed that the enhanced TM transmission efficiency and η followed a Fabry-Pérot (FP) resonance mode within the created sulfuric polymer film. This polymeric MWIR polarizer demonstrated a great potential for broader applications in IR photonics to realize low-cost and durable optical components.
[Display omitted]
•The first polymer-based mid-wavelength infrared linear polarizer was built with sulfuric polymer film.•Current mid-wavelength infrared polarizer optical elements are based on expensive and fragile inorganic materials.•Transmission and extinction ratio are comparable to commercial products.•Both computational simulation and analytical model confirmed the enhanced transmission efficiency and extinction ratio.•Advantages of the polymeric material allow low-cost and scalable manufacturing.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2019.05.036</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2019-08, Vol.176 (C), p.118-126 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_osti_scitechconnect_1524627 |
source | ScienceDirect Journals |
subjects | Computer applications Computer simulation ENGINEERING Fabry-pérot resonance Fourier transforms Infrared analysis Optical components Optical properties Optics Photonics Polarizer Polarizers Pollutant deposition Polymer films Polymers Sulfur Sulfur polymer Theoretical analysis Transmission efficiency Wavelength |
title | Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(sulfur-random-(1,3-diisopropenylbenzene))%20based%20mid-wavelength%20infrared%20polarizer:%20Optical%20property%20experimental%20and%20theoretical%20analysis&rft.jtitle=Polymer%20(Guilford)&rft.au=Berndt,%20Aaron%20J.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-08-02&rft.volume=176&rft.issue=C&rft.spage=118&rft.epage=126&rft.pages=118-126&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2019.05.036&rft_dat=%3Cproquest_osti_%3E2273189349%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2273189349&rft_id=info:pmid/&rfr_iscdi=true |