Loading…

Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis

Development of polymer based mid-wavelength infrared (MWIR) optics has been limited mainly due to high optical loss of organic polymers used in general optical components. In this study, a MWIR polarization grating based on a sulfuric polymer poly(sulfur-random-(1,3-diisopropenylbenzene)) with a low...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2019-08, Vol.176 (C), p.118-126
Main Authors: Berndt, Aaron J., Hwang, Jehwan, Islam, Md Didarul, Sihn, Amy, Urbas, Augustine M., Ku, Zahyun, Lee, Sang Jun, Czaplewski, David A., Dong, Mengyao, Shao, Qian, Wu, Shide, Guo, Zhanhu, Ryu, Jong Eun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3
cites cdi_FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3
container_end_page 126
container_issue C
container_start_page 118
container_title Polymer (Guilford)
container_volume 176
creator Berndt, Aaron J.
Hwang, Jehwan
Islam, Md Didarul
Sihn, Amy
Urbas, Augustine M.
Ku, Zahyun
Lee, Sang Jun
Czaplewski, David A.
Dong, Mengyao
Shao, Qian
Wu, Shide
Guo, Zhanhu
Ryu, Jong Eun
description Development of polymer based mid-wavelength infrared (MWIR) optics has been limited mainly due to high optical loss of organic polymers used in general optical components. In this study, a MWIR polarization grating based on a sulfuric polymer poly(sulfur-random-(1,3-diisopropenylbenzene)) with a low loss in the MWIR range was fabricated using a simple two-step process: imprint and metal deposition. Fourier-transform infrared (FTIR) spectroscopy measurement showed that this polymeric MWIR polarizer selectively transmitted the polarized IR in transverse magnetic (TM) mode over the transverse electric (TE) mode at normal incidence. The measured extinction ratios (η  = The ratio of transmissions in TM and TE) were 208, 176, and 212 at the wavelength of 3, 4, and 5 μm, respectively. The computational simulation and analytical model confirmed that the enhanced TM transmission efficiency and η followed a Fabry-Pérot (FP) resonance mode within the created sulfuric polymer film. This polymeric MWIR polarizer demonstrated a great potential for broader applications in IR photonics to realize low-cost and durable optical components. [Display omitted] •The first polymer-based mid-wavelength infrared linear polarizer was built with sulfuric polymer film.•Current mid-wavelength infrared polarizer optical elements are based on expensive and fragile inorganic materials.•Transmission and extinction ratio are comparable to commercial products.•Both computational simulation and analytical model confirmed the enhanced transmission efficiency and extinction ratio.•Advantages of the polymeric material allow low-cost and scalable manufacturing.
doi_str_mv 10.1016/j.polymer.2019.05.036
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1524627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386119304501</els_id><sourcerecordid>2273189349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCVWFp-AlIEl1Zqgj8SJ-ZSoap8SJXKAc6W40xYr7J2sL2l6Y_ob2aW9M5ppJn3Zt6bR8hbRitGmfywq-YwLXuIFadMVbSpqJAvyIZ1rSg5V-wl2VAqeCk6yV6R1yntKKW84fWGPH1H6nk6TOMhltH4IezLc3YpysG5FOYYZvDL1IN_BA8XF0VvEgzF3g3lH3MPE_hfeVs4P0YTsY86THSPED8Wd3N21kzFvxUxLwU8YHV78Bm7eKjIWwgRVpTxZlqSS2fkZDRTgjfP9ZT8_Hzz4_preXv35dv1p9vS1nWXSyWkEJJ2HfQD7dAaG8Eq1qpW8VaNjQVL-7rno1SmHZngUnb4DAmmlUMNgzgl79a9IWWnk3UZ7NYG78FmzfAzkrcIer-C0MPvA6Ssd-EQUWnSHMesU6JWiGpWlI0hpQijntGmiYtmVB_z0Tv9nI8-5qNpozEf5F2tPECf9w6nKAO8hcHFo4ohuP9s-AvM2J5f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273189349</pqid></control><display><type>article</type><title>Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis</title><source>ScienceDirect Journals</source><creator>Berndt, Aaron J. ; Hwang, Jehwan ; Islam, Md Didarul ; Sihn, Amy ; Urbas, Augustine M. ; Ku, Zahyun ; Lee, Sang Jun ; Czaplewski, David A. ; Dong, Mengyao ; Shao, Qian ; Wu, Shide ; Guo, Zhanhu ; Ryu, Jong Eun</creator><creatorcontrib>Berndt, Aaron J. ; Hwang, Jehwan ; Islam, Md Didarul ; Sihn, Amy ; Urbas, Augustine M. ; Ku, Zahyun ; Lee, Sang Jun ; Czaplewski, David A. ; Dong, Mengyao ; Shao, Qian ; Wu, Shide ; Guo, Zhanhu ; Ryu, Jong Eun ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Development of polymer based mid-wavelength infrared (MWIR) optics has been limited mainly due to high optical loss of organic polymers used in general optical components. In this study, a MWIR polarization grating based on a sulfuric polymer poly(sulfur-random-(1,3-diisopropenylbenzene)) with a low loss in the MWIR range was fabricated using a simple two-step process: imprint and metal deposition. Fourier-transform infrared (FTIR) spectroscopy measurement showed that this polymeric MWIR polarizer selectively transmitted the polarized IR in transverse magnetic (TM) mode over the transverse electric (TE) mode at normal incidence. The measured extinction ratios (η  = The ratio of transmissions in TM and TE) were 208, 176, and 212 at the wavelength of 3, 4, and 5 μm, respectively. The computational simulation and analytical model confirmed that the enhanced TM transmission efficiency and η followed a Fabry-Pérot (FP) resonance mode within the created sulfuric polymer film. This polymeric MWIR polarizer demonstrated a great potential for broader applications in IR photonics to realize low-cost and durable optical components. [Display omitted] •The first polymer-based mid-wavelength infrared linear polarizer was built with sulfuric polymer film.•Current mid-wavelength infrared polarizer optical elements are based on expensive and fragile inorganic materials.•Transmission and extinction ratio are comparable to commercial products.•Both computational simulation and analytical model confirmed the enhanced transmission efficiency and extinction ratio.•Advantages of the polymeric material allow low-cost and scalable manufacturing.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2019.05.036</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computer applications ; Computer simulation ; ENGINEERING ; Fabry-pérot resonance ; Fourier transforms ; Infrared analysis ; Optical components ; Optical properties ; Optics ; Photonics ; Polarizer ; Polarizers ; Pollutant deposition ; Polymer films ; Polymers ; Sulfur ; Sulfur polymer ; Theoretical analysis ; Transmission efficiency ; Wavelength</subject><ispartof>Polymer (Guilford), 2019-08, Vol.176 (C), p.118-126</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3</citedby><cites>FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1524627$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Berndt, Aaron J.</creatorcontrib><creatorcontrib>Hwang, Jehwan</creatorcontrib><creatorcontrib>Islam, Md Didarul</creatorcontrib><creatorcontrib>Sihn, Amy</creatorcontrib><creatorcontrib>Urbas, Augustine M.</creatorcontrib><creatorcontrib>Ku, Zahyun</creatorcontrib><creatorcontrib>Lee, Sang Jun</creatorcontrib><creatorcontrib>Czaplewski, David A.</creatorcontrib><creatorcontrib>Dong, Mengyao</creatorcontrib><creatorcontrib>Shao, Qian</creatorcontrib><creatorcontrib>Wu, Shide</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><creatorcontrib>Ryu, Jong Eun</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis</title><title>Polymer (Guilford)</title><description>Development of polymer based mid-wavelength infrared (MWIR) optics has been limited mainly due to high optical loss of organic polymers used in general optical components. In this study, a MWIR polarization grating based on a sulfuric polymer poly(sulfur-random-(1,3-diisopropenylbenzene)) with a low loss in the MWIR range was fabricated using a simple two-step process: imprint and metal deposition. Fourier-transform infrared (FTIR) spectroscopy measurement showed that this polymeric MWIR polarizer selectively transmitted the polarized IR in transverse magnetic (TM) mode over the transverse electric (TE) mode at normal incidence. The measured extinction ratios (η  = The ratio of transmissions in TM and TE) were 208, 176, and 212 at the wavelength of 3, 4, and 5 μm, respectively. The computational simulation and analytical model confirmed that the enhanced TM transmission efficiency and η followed a Fabry-Pérot (FP) resonance mode within the created sulfuric polymer film. This polymeric MWIR polarizer demonstrated a great potential for broader applications in IR photonics to realize low-cost and durable optical components. [Display omitted] •The first polymer-based mid-wavelength infrared linear polarizer was built with sulfuric polymer film.•Current mid-wavelength infrared polarizer optical elements are based on expensive and fragile inorganic materials.•Transmission and extinction ratio are comparable to commercial products.•Both computational simulation and analytical model confirmed the enhanced transmission efficiency and extinction ratio.•Advantages of the polymeric material allow low-cost and scalable manufacturing.</description><subject>Computer applications</subject><subject>Computer simulation</subject><subject>ENGINEERING</subject><subject>Fabry-pérot resonance</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Optical components</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Photonics</subject><subject>Polarizer</subject><subject>Polarizers</subject><subject>Pollutant deposition</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Sulfur</subject><subject>Sulfur polymer</subject><subject>Theoretical analysis</subject><subject>Transmission efficiency</subject><subject>Wavelength</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v1DAQtRCVWFp-AlIEl1Zqgj8SJ-ZSoap8SJXKAc6W40xYr7J2sL2l6Y_ob2aW9M5ppJn3Zt6bR8hbRitGmfywq-YwLXuIFadMVbSpqJAvyIZ1rSg5V-wl2VAqeCk6yV6R1yntKKW84fWGPH1H6nk6TOMhltH4IezLc3YpysG5FOYYZvDL1IN_BA8XF0VvEgzF3g3lH3MPE_hfeVs4P0YTsY86THSPED8Wd3N21kzFvxUxLwU8YHV78Bm7eKjIWwgRVpTxZlqSS2fkZDRTgjfP9ZT8_Hzz4_preXv35dv1p9vS1nWXSyWkEJJ2HfQD7dAaG8Eq1qpW8VaNjQVL-7rno1SmHZngUnb4DAmmlUMNgzgl79a9IWWnk3UZ7NYG78FmzfAzkrcIer-C0MPvA6Ssd-EQUWnSHMesU6JWiGpWlI0hpQijntGmiYtmVB_z0Tv9nI8-5qNpozEf5F2tPECf9w6nKAO8hcHFo4ohuP9s-AvM2J5f</recordid><startdate>20190802</startdate><enddate>20190802</enddate><creator>Berndt, Aaron J.</creator><creator>Hwang, Jehwan</creator><creator>Islam, Md Didarul</creator><creator>Sihn, Amy</creator><creator>Urbas, Augustine M.</creator><creator>Ku, Zahyun</creator><creator>Lee, Sang Jun</creator><creator>Czaplewski, David A.</creator><creator>Dong, Mengyao</creator><creator>Shao, Qian</creator><creator>Wu, Shide</creator><creator>Guo, Zhanhu</creator><creator>Ryu, Jong Eun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190802</creationdate><title>Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis</title><author>Berndt, Aaron J. ; Hwang, Jehwan ; Islam, Md Didarul ; Sihn, Amy ; Urbas, Augustine M. ; Ku, Zahyun ; Lee, Sang Jun ; Czaplewski, David A. ; Dong, Mengyao ; Shao, Qian ; Wu, Shide ; Guo, Zhanhu ; Ryu, Jong Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer applications</topic><topic>Computer simulation</topic><topic>ENGINEERING</topic><topic>Fabry-pérot resonance</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Optical components</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Photonics</topic><topic>Polarizer</topic><topic>Polarizers</topic><topic>Pollutant deposition</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Sulfur</topic><topic>Sulfur polymer</topic><topic>Theoretical analysis</topic><topic>Transmission efficiency</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berndt, Aaron J.</creatorcontrib><creatorcontrib>Hwang, Jehwan</creatorcontrib><creatorcontrib>Islam, Md Didarul</creatorcontrib><creatorcontrib>Sihn, Amy</creatorcontrib><creatorcontrib>Urbas, Augustine M.</creatorcontrib><creatorcontrib>Ku, Zahyun</creatorcontrib><creatorcontrib>Lee, Sang Jun</creatorcontrib><creatorcontrib>Czaplewski, David A.</creatorcontrib><creatorcontrib>Dong, Mengyao</creatorcontrib><creatorcontrib>Shao, Qian</creatorcontrib><creatorcontrib>Wu, Shide</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><creatorcontrib>Ryu, Jong Eun</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berndt, Aaron J.</au><au>Hwang, Jehwan</au><au>Islam, Md Didarul</au><au>Sihn, Amy</au><au>Urbas, Augustine M.</au><au>Ku, Zahyun</au><au>Lee, Sang Jun</au><au>Czaplewski, David A.</au><au>Dong, Mengyao</au><au>Shao, Qian</au><au>Wu, Shide</au><au>Guo, Zhanhu</au><au>Ryu, Jong Eun</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis</atitle><jtitle>Polymer (Guilford)</jtitle><date>2019-08-02</date><risdate>2019</risdate><volume>176</volume><issue>C</issue><spage>118</spage><epage>126</epage><pages>118-126</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Development of polymer based mid-wavelength infrared (MWIR) optics has been limited mainly due to high optical loss of organic polymers used in general optical components. In this study, a MWIR polarization grating based on a sulfuric polymer poly(sulfur-random-(1,3-diisopropenylbenzene)) with a low loss in the MWIR range was fabricated using a simple two-step process: imprint and metal deposition. Fourier-transform infrared (FTIR) spectroscopy measurement showed that this polymeric MWIR polarizer selectively transmitted the polarized IR in transverse magnetic (TM) mode over the transverse electric (TE) mode at normal incidence. The measured extinction ratios (η  = The ratio of transmissions in TM and TE) were 208, 176, and 212 at the wavelength of 3, 4, and 5 μm, respectively. The computational simulation and analytical model confirmed that the enhanced TM transmission efficiency and η followed a Fabry-Pérot (FP) resonance mode within the created sulfuric polymer film. This polymeric MWIR polarizer demonstrated a great potential for broader applications in IR photonics to realize low-cost and durable optical components. [Display omitted] •The first polymer-based mid-wavelength infrared linear polarizer was built with sulfuric polymer film.•Current mid-wavelength infrared polarizer optical elements are based on expensive and fragile inorganic materials.•Transmission and extinction ratio are comparable to commercial products.•Both computational simulation and analytical model confirmed the enhanced transmission efficiency and extinction ratio.•Advantages of the polymeric material allow low-cost and scalable manufacturing.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2019.05.036</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2019-08, Vol.176 (C), p.118-126
issn 0032-3861
1873-2291
language eng
recordid cdi_osti_scitechconnect_1524627
source ScienceDirect Journals
subjects Computer applications
Computer simulation
ENGINEERING
Fabry-pérot resonance
Fourier transforms
Infrared analysis
Optical components
Optical properties
Optics
Photonics
Polarizer
Polarizers
Pollutant deposition
Polymer films
Polymers
Sulfur
Sulfur polymer
Theoretical analysis
Transmission efficiency
Wavelength
title Poly(sulfur-random-(1,3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(sulfur-random-(1,3-diisopropenylbenzene))%20based%20mid-wavelength%20infrared%20polarizer:%20Optical%20property%20experimental%20and%20theoretical%20analysis&rft.jtitle=Polymer%20(Guilford)&rft.au=Berndt,%20Aaron%20J.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-08-02&rft.volume=176&rft.issue=C&rft.spage=118&rft.epage=126&rft.pages=118-126&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2019.05.036&rft_dat=%3Cproquest_osti_%3E2273189349%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-936336088ebd080321fec917979279f5cec0b4b2f69a7f1326688736ea76d4ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2273189349&rft_id=info:pmid/&rfr_iscdi=true