Loading…

Terahertz-driven phonon upconversion in SrTiO3

Direct manipulation of the atomic lattice using intense long-wavelength laser pulses has become a viable approach to create new states of matter in complex materials. Conventionally, a high-frequency vibrational mode is driven resonantly by a mid-infrared laser pulse and the lattice structure is mod...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2019-04, Vol.15 (4), p.387-392
Main Authors: Kozina, M., Fechner, M., Marsik, P., van Driel, T., Glownia, J. M., Bernhard, C., Radovic, M., Zhu, D., Bonetti, S., Staub, U., Hoffmann, M. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Direct manipulation of the atomic lattice using intense long-wavelength laser pulses has become a viable approach to create new states of matter in complex materials. Conventionally, a high-frequency vibrational mode is driven resonantly by a mid-infrared laser pulse and the lattice structure is modified through indirect coupling of this infrared-active phonon to other, lower-frequency lattice modulations. Here, we drive the lowest-frequency optical phonon in the prototypical transition metal oxide SrTiO 3 well into the anharmonic regime with an intense terahertz field. We show that it is possible to transfer energy to higher-frequency phonon modes through nonlinear coupling. Our observations are carried out by directly mapping the lattice response to the coherent drive field with femtosecond X-ray pulses, enabling direct visualization of the atomic displacements. A spectroscopic study of strontium titanate provides a method for transferring the vibrational energy of a low-frequency phonon mode to higher-frequency modes, with the potential to access elusive ‘silent’ modes.
ISSN:1745-2473
1745-2481
DOI:10.1038/s41567-018-0408-1