Loading…

Experimental study of energy transfer in double shell implosions

Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compres...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2019-05, Vol.26 (5)
Main Authors: Merritt, Elizabeth Catherine, Sauppe, Joshua Paul, Loomis, Eric Nicholas, Cardenas, Tana, Montgomery, David S., Daughton, William Scott, Wilson, Douglas Carl, Kline, John L., Khan, Shahab F., Schoff, Mike, Hoppe, Martin, Fierro, Franklin, Randolph, Randall Blaine, Patterson, Brian M., Kuettner, Lindsey Ann, Sacks, Ryan Foster, Dodd, Evan S., Wan, Willow Chilim, Palaniyappan, Sasikumar, Batha, Steven H., Keiter, Paul Arthur, Rygg, J. Ryan, Smalyuk, Vladimir, Ping, Yuan, Amendt, Peter
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 5
container_start_page
container_title Physics of plasmas
container_volume 26
creator Merritt, Elizabeth Catherine
Sauppe, Joshua Paul
Loomis, Eric Nicholas
Cardenas, Tana
Montgomery, David S.
Daughton, William Scott
Wilson, Douglas Carl
Kline, John L.
Khan, Shahab F.
Schoff, Mike
Hoppe, Martin
Fierro, Franklin
Randolph, Randall Blaine
Patterson, Brian M.
Kuettner, Lindsey Ann
Sacks, Ryan Foster
Dodd, Evan S.
Wan, Willow Chilim
Palaniyappan, Sasikumar
Batha, Steven H.
Keiter, Paul Arthur
Rygg, J. Ryan
Smalyuk, Vladimir
Ping, Yuan
Amendt, Peter
description Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. Here, the measured energy transfer to the foam cushion and the inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22% ± 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27% ± 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to ~5%, without inclusion of higher order 2D and 3D effects.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1532713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1532713</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15327133</originalsourceid><addsrcrecordid>eNqNyt8KgjAUgPERBdmfdzh0L8zUze6CMHqALroTncdczE12JuTbR9ADdPX9Lr4FixJenGIpZLb8WvJYiOyxZhuiF-c8E3kRsXP5HtHrAW2oDVCY2hlcB2jRP2cIvrbUoQdtoXVTYxCoR2NAD6NxpJ2lHVt1tSHc_7plh2t5v9xiR0FXpHRA1StnLapQJXl6lEma_jV9ADAgOxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental study of energy transfer in double shell implosions</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Merritt, Elizabeth Catherine ; Sauppe, Joshua Paul ; Loomis, Eric Nicholas ; Cardenas, Tana ; Montgomery, David S. ; Daughton, William Scott ; Wilson, Douglas Carl ; Kline, John L. ; Khan, Shahab F. ; Schoff, Mike ; Hoppe, Martin ; Fierro, Franklin ; Randolph, Randall Blaine ; Patterson, Brian M. ; Kuettner, Lindsey Ann ; Sacks, Ryan Foster ; Dodd, Evan S. ; Wan, Willow Chilim ; Palaniyappan, Sasikumar ; Batha, Steven H. ; Keiter, Paul Arthur ; Rygg, J. Ryan ; Smalyuk, Vladimir ; Ping, Yuan ; Amendt, Peter</creator><creatorcontrib>Merritt, Elizabeth Catherine ; Sauppe, Joshua Paul ; Loomis, Eric Nicholas ; Cardenas, Tana ; Montgomery, David S. ; Daughton, William Scott ; Wilson, Douglas Carl ; Kline, John L. ; Khan, Shahab F. ; Schoff, Mike ; Hoppe, Martin ; Fierro, Franklin ; Randolph, Randall Blaine ; Patterson, Brian M. ; Kuettner, Lindsey Ann ; Sacks, Ryan Foster ; Dodd, Evan S. ; Wan, Willow Chilim ; Palaniyappan, Sasikumar ; Batha, Steven H. ; Keiter, Paul Arthur ; Rygg, J. Ryan ; Smalyuk, Vladimir ; Ping, Yuan ; Amendt, Peter ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. Here, the measured energy transfer to the foam cushion and the inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22% ± 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27% ± 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to ~5%, without inclusion of higher order 2D and 3D effects.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Double Shells ; Radiation trapping</subject><ispartof>Physics of plasmas, 2019-05, Vol.26 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000310517559 ; 0000000199711846 ; 0000000192447376 ; 0000000290260070 ; 0000000239944194 ; 0000000308989178 ; 0000000206057847 ; 0000000153537483 ; 0000000223556242 ; 0000000222719919 ; 0000000320951383 ; 0000000273956527 ; 0000000218231013 ; 0000000208029356 ; 0000000332080538 ; 0000000188744458 ; 0000000207594476 ; 0000000215071595 ; 0000000182862904 ; 0000000248799072 ; 0000000163771206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1532713$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Merritt, Elizabeth Catherine</creatorcontrib><creatorcontrib>Sauppe, Joshua Paul</creatorcontrib><creatorcontrib>Loomis, Eric Nicholas</creatorcontrib><creatorcontrib>Cardenas, Tana</creatorcontrib><creatorcontrib>Montgomery, David S.</creatorcontrib><creatorcontrib>Daughton, William Scott</creatorcontrib><creatorcontrib>Wilson, Douglas Carl</creatorcontrib><creatorcontrib>Kline, John L.</creatorcontrib><creatorcontrib>Khan, Shahab F.</creatorcontrib><creatorcontrib>Schoff, Mike</creatorcontrib><creatorcontrib>Hoppe, Martin</creatorcontrib><creatorcontrib>Fierro, Franklin</creatorcontrib><creatorcontrib>Randolph, Randall Blaine</creatorcontrib><creatorcontrib>Patterson, Brian M.</creatorcontrib><creatorcontrib>Kuettner, Lindsey Ann</creatorcontrib><creatorcontrib>Sacks, Ryan Foster</creatorcontrib><creatorcontrib>Dodd, Evan S.</creatorcontrib><creatorcontrib>Wan, Willow Chilim</creatorcontrib><creatorcontrib>Palaniyappan, Sasikumar</creatorcontrib><creatorcontrib>Batha, Steven H.</creatorcontrib><creatorcontrib>Keiter, Paul Arthur</creatorcontrib><creatorcontrib>Rygg, J. Ryan</creatorcontrib><creatorcontrib>Smalyuk, Vladimir</creatorcontrib><creatorcontrib>Ping, Yuan</creatorcontrib><creatorcontrib>Amendt, Peter</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Experimental study of energy transfer in double shell implosions</title><title>Physics of plasmas</title><description>Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. Here, the measured energy transfer to the foam cushion and the inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22% ± 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27% ± 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to ~5%, without inclusion of higher order 2D and 3D effects.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Double Shells</subject><subject>Radiation trapping</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNyt8KgjAUgPERBdmfdzh0L8zUze6CMHqALroTncdczE12JuTbR9ADdPX9Lr4FixJenGIpZLb8WvJYiOyxZhuiF-c8E3kRsXP5HtHrAW2oDVCY2hlcB2jRP2cIvrbUoQdtoXVTYxCoR2NAD6NxpJ2lHVt1tSHc_7plh2t5v9xiR0FXpHRA1StnLapQJXl6lEma_jV9ADAgOxg</recordid><startdate>20190508</startdate><enddate>20190508</enddate><creator>Merritt, Elizabeth Catherine</creator><creator>Sauppe, Joshua Paul</creator><creator>Loomis, Eric Nicholas</creator><creator>Cardenas, Tana</creator><creator>Montgomery, David S.</creator><creator>Daughton, William Scott</creator><creator>Wilson, Douglas Carl</creator><creator>Kline, John L.</creator><creator>Khan, Shahab F.</creator><creator>Schoff, Mike</creator><creator>Hoppe, Martin</creator><creator>Fierro, Franklin</creator><creator>Randolph, Randall Blaine</creator><creator>Patterson, Brian M.</creator><creator>Kuettner, Lindsey Ann</creator><creator>Sacks, Ryan Foster</creator><creator>Dodd, Evan S.</creator><creator>Wan, Willow Chilim</creator><creator>Palaniyappan, Sasikumar</creator><creator>Batha, Steven H.</creator><creator>Keiter, Paul Arthur</creator><creator>Rygg, J. Ryan</creator><creator>Smalyuk, Vladimir</creator><creator>Ping, Yuan</creator><creator>Amendt, Peter</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000310517559</orcidid><orcidid>https://orcid.org/0000000199711846</orcidid><orcidid>https://orcid.org/0000000192447376</orcidid><orcidid>https://orcid.org/0000000290260070</orcidid><orcidid>https://orcid.org/0000000239944194</orcidid><orcidid>https://orcid.org/0000000308989178</orcidid><orcidid>https://orcid.org/0000000206057847</orcidid><orcidid>https://orcid.org/0000000153537483</orcidid><orcidid>https://orcid.org/0000000223556242</orcidid><orcidid>https://orcid.org/0000000222719919</orcidid><orcidid>https://orcid.org/0000000320951383</orcidid><orcidid>https://orcid.org/0000000273956527</orcidid><orcidid>https://orcid.org/0000000218231013</orcidid><orcidid>https://orcid.org/0000000208029356</orcidid><orcidid>https://orcid.org/0000000332080538</orcidid><orcidid>https://orcid.org/0000000188744458</orcidid><orcidid>https://orcid.org/0000000207594476</orcidid><orcidid>https://orcid.org/0000000215071595</orcidid><orcidid>https://orcid.org/0000000182862904</orcidid><orcidid>https://orcid.org/0000000248799072</orcidid><orcidid>https://orcid.org/0000000163771206</orcidid></search><sort><creationdate>20190508</creationdate><title>Experimental study of energy transfer in double shell implosions</title><author>Merritt, Elizabeth Catherine ; Sauppe, Joshua Paul ; Loomis, Eric Nicholas ; Cardenas, Tana ; Montgomery, David S. ; Daughton, William Scott ; Wilson, Douglas Carl ; Kline, John L. ; Khan, Shahab F. ; Schoff, Mike ; Hoppe, Martin ; Fierro, Franklin ; Randolph, Randall Blaine ; Patterson, Brian M. ; Kuettner, Lindsey Ann ; Sacks, Ryan Foster ; Dodd, Evan S. ; Wan, Willow Chilim ; Palaniyappan, Sasikumar ; Batha, Steven H. ; Keiter, Paul Arthur ; Rygg, J. Ryan ; Smalyuk, Vladimir ; Ping, Yuan ; Amendt, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15327133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Double Shells</topic><topic>Radiation trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merritt, Elizabeth Catherine</creatorcontrib><creatorcontrib>Sauppe, Joshua Paul</creatorcontrib><creatorcontrib>Loomis, Eric Nicholas</creatorcontrib><creatorcontrib>Cardenas, Tana</creatorcontrib><creatorcontrib>Montgomery, David S.</creatorcontrib><creatorcontrib>Daughton, William Scott</creatorcontrib><creatorcontrib>Wilson, Douglas Carl</creatorcontrib><creatorcontrib>Kline, John L.</creatorcontrib><creatorcontrib>Khan, Shahab F.</creatorcontrib><creatorcontrib>Schoff, Mike</creatorcontrib><creatorcontrib>Hoppe, Martin</creatorcontrib><creatorcontrib>Fierro, Franklin</creatorcontrib><creatorcontrib>Randolph, Randall Blaine</creatorcontrib><creatorcontrib>Patterson, Brian M.</creatorcontrib><creatorcontrib>Kuettner, Lindsey Ann</creatorcontrib><creatorcontrib>Sacks, Ryan Foster</creatorcontrib><creatorcontrib>Dodd, Evan S.</creatorcontrib><creatorcontrib>Wan, Willow Chilim</creatorcontrib><creatorcontrib>Palaniyappan, Sasikumar</creatorcontrib><creatorcontrib>Batha, Steven H.</creatorcontrib><creatorcontrib>Keiter, Paul Arthur</creatorcontrib><creatorcontrib>Rygg, J. Ryan</creatorcontrib><creatorcontrib>Smalyuk, Vladimir</creatorcontrib><creatorcontrib>Ping, Yuan</creatorcontrib><creatorcontrib>Amendt, Peter</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merritt, Elizabeth Catherine</au><au>Sauppe, Joshua Paul</au><au>Loomis, Eric Nicholas</au><au>Cardenas, Tana</au><au>Montgomery, David S.</au><au>Daughton, William Scott</au><au>Wilson, Douglas Carl</au><au>Kline, John L.</au><au>Khan, Shahab F.</au><au>Schoff, Mike</au><au>Hoppe, Martin</au><au>Fierro, Franklin</au><au>Randolph, Randall Blaine</au><au>Patterson, Brian M.</au><au>Kuettner, Lindsey Ann</au><au>Sacks, Ryan Foster</au><au>Dodd, Evan S.</au><au>Wan, Willow Chilim</au><au>Palaniyappan, Sasikumar</au><au>Batha, Steven H.</au><au>Keiter, Paul Arthur</au><au>Rygg, J. Ryan</au><au>Smalyuk, Vladimir</au><au>Ping, Yuan</au><au>Amendt, Peter</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study of energy transfer in double shell implosions</atitle><jtitle>Physics of plasmas</jtitle><date>2019-05-08</date><risdate>2019</risdate><volume>26</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. Here, the measured energy transfer to the foam cushion and the inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22% ± 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27% ± 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to ~5%, without inclusion of higher order 2D and 3D effects.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000310517559</orcidid><orcidid>https://orcid.org/0000000199711846</orcidid><orcidid>https://orcid.org/0000000192447376</orcidid><orcidid>https://orcid.org/0000000290260070</orcidid><orcidid>https://orcid.org/0000000239944194</orcidid><orcidid>https://orcid.org/0000000308989178</orcidid><orcidid>https://orcid.org/0000000206057847</orcidid><orcidid>https://orcid.org/0000000153537483</orcidid><orcidid>https://orcid.org/0000000223556242</orcidid><orcidid>https://orcid.org/0000000222719919</orcidid><orcidid>https://orcid.org/0000000320951383</orcidid><orcidid>https://orcid.org/0000000273956527</orcidid><orcidid>https://orcid.org/0000000218231013</orcidid><orcidid>https://orcid.org/0000000208029356</orcidid><orcidid>https://orcid.org/0000000332080538</orcidid><orcidid>https://orcid.org/0000000188744458</orcidid><orcidid>https://orcid.org/0000000207594476</orcidid><orcidid>https://orcid.org/0000000215071595</orcidid><orcidid>https://orcid.org/0000000182862904</orcidid><orcidid>https://orcid.org/0000000248799072</orcidid><orcidid>https://orcid.org/0000000163771206</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2019-05, Vol.26 (5)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1532713
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Double Shells
Radiation trapping
title Experimental study of energy transfer in double shell implosions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T14%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20of%20energy%20transfer%20in%20double%20shell%20implosions&rft.jtitle=Physics%20of%20plasmas&rft.au=Merritt,%20Elizabeth%20Catherine&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2019-05-08&rft.volume=26&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/&rft_dat=%3Costi%3E1532713%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_15327133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true