Loading…
Experimental study of energy transfer in double shell implosions
Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compres...
Saved in:
Published in: | Physics of plasmas 2019-05, Vol.26 (5) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 26 |
creator | Merritt, Elizabeth Catherine Sauppe, Joshua Paul Loomis, Eric Nicholas Cardenas, Tana Montgomery, David S. Daughton, William Scott Wilson, Douglas Carl Kline, John L. Khan, Shahab F. Schoff, Mike Hoppe, Martin Fierro, Franklin Randolph, Randall Blaine Patterson, Brian M. Kuettner, Lindsey Ann Sacks, Ryan Foster Dodd, Evan S. Wan, Willow Chilim Palaniyappan, Sasikumar Batha, Steven H. Keiter, Paul Arthur Rygg, J. Ryan Smalyuk, Vladimir Ping, Yuan Amendt, Peter |
description | Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. Here, the measured energy transfer to the foam cushion and the inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22% ± 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27% ± 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to ~5%, without inclusion of higher order 2D and 3D effects. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1532713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1532713</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15327133</originalsourceid><addsrcrecordid>eNqNyt8KgjAUgPERBdmfdzh0L8zUze6CMHqALroTncdczE12JuTbR9ADdPX9Lr4FixJenGIpZLb8WvJYiOyxZhuiF-c8E3kRsXP5HtHrAW2oDVCY2hlcB2jRP2cIvrbUoQdtoXVTYxCoR2NAD6NxpJ2lHVt1tSHc_7plh2t5v9xiR0FXpHRA1StnLapQJXl6lEma_jV9ADAgOxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental study of energy transfer in double shell implosions</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Merritt, Elizabeth Catherine ; Sauppe, Joshua Paul ; Loomis, Eric Nicholas ; Cardenas, Tana ; Montgomery, David S. ; Daughton, William Scott ; Wilson, Douglas Carl ; Kline, John L. ; Khan, Shahab F. ; Schoff, Mike ; Hoppe, Martin ; Fierro, Franklin ; Randolph, Randall Blaine ; Patterson, Brian M. ; Kuettner, Lindsey Ann ; Sacks, Ryan Foster ; Dodd, Evan S. ; Wan, Willow Chilim ; Palaniyappan, Sasikumar ; Batha, Steven H. ; Keiter, Paul Arthur ; Rygg, J. Ryan ; Smalyuk, Vladimir ; Ping, Yuan ; Amendt, Peter</creator><creatorcontrib>Merritt, Elizabeth Catherine ; Sauppe, Joshua Paul ; Loomis, Eric Nicholas ; Cardenas, Tana ; Montgomery, David S. ; Daughton, William Scott ; Wilson, Douglas Carl ; Kline, John L. ; Khan, Shahab F. ; Schoff, Mike ; Hoppe, Martin ; Fierro, Franklin ; Randolph, Randall Blaine ; Patterson, Brian M. ; Kuettner, Lindsey Ann ; Sacks, Ryan Foster ; Dodd, Evan S. ; Wan, Willow Chilim ; Palaniyappan, Sasikumar ; Batha, Steven H. ; Keiter, Paul Arthur ; Rygg, J. Ryan ; Smalyuk, Vladimir ; Ping, Yuan ; Amendt, Peter ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. Here, the measured energy transfer to the foam cushion and the inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22% ± 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27% ± 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to ~5%, without inclusion of higher order 2D and 3D effects.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Double Shells ; Radiation trapping</subject><ispartof>Physics of plasmas, 2019-05, Vol.26 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000310517559 ; 0000000199711846 ; 0000000192447376 ; 0000000290260070 ; 0000000239944194 ; 0000000308989178 ; 0000000206057847 ; 0000000153537483 ; 0000000223556242 ; 0000000222719919 ; 0000000320951383 ; 0000000273956527 ; 0000000218231013 ; 0000000208029356 ; 0000000332080538 ; 0000000188744458 ; 0000000207594476 ; 0000000215071595 ; 0000000182862904 ; 0000000248799072 ; 0000000163771206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1532713$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Merritt, Elizabeth Catherine</creatorcontrib><creatorcontrib>Sauppe, Joshua Paul</creatorcontrib><creatorcontrib>Loomis, Eric Nicholas</creatorcontrib><creatorcontrib>Cardenas, Tana</creatorcontrib><creatorcontrib>Montgomery, David S.</creatorcontrib><creatorcontrib>Daughton, William Scott</creatorcontrib><creatorcontrib>Wilson, Douglas Carl</creatorcontrib><creatorcontrib>Kline, John L.</creatorcontrib><creatorcontrib>Khan, Shahab F.</creatorcontrib><creatorcontrib>Schoff, Mike</creatorcontrib><creatorcontrib>Hoppe, Martin</creatorcontrib><creatorcontrib>Fierro, Franklin</creatorcontrib><creatorcontrib>Randolph, Randall Blaine</creatorcontrib><creatorcontrib>Patterson, Brian M.</creatorcontrib><creatorcontrib>Kuettner, Lindsey Ann</creatorcontrib><creatorcontrib>Sacks, Ryan Foster</creatorcontrib><creatorcontrib>Dodd, Evan S.</creatorcontrib><creatorcontrib>Wan, Willow Chilim</creatorcontrib><creatorcontrib>Palaniyappan, Sasikumar</creatorcontrib><creatorcontrib>Batha, Steven H.</creatorcontrib><creatorcontrib>Keiter, Paul Arthur</creatorcontrib><creatorcontrib>Rygg, J. Ryan</creatorcontrib><creatorcontrib>Smalyuk, Vladimir</creatorcontrib><creatorcontrib>Ping, Yuan</creatorcontrib><creatorcontrib>Amendt, Peter</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Experimental study of energy transfer in double shell implosions</title><title>Physics of plasmas</title><description>Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. Here, the measured energy transfer to the foam cushion and the inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22% ± 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27% ± 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to ~5%, without inclusion of higher order 2D and 3D effects.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Double Shells</subject><subject>Radiation trapping</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNyt8KgjAUgPERBdmfdzh0L8zUze6CMHqALroTncdczE12JuTbR9ADdPX9Lr4FixJenGIpZLb8WvJYiOyxZhuiF-c8E3kRsXP5HtHrAW2oDVCY2hlcB2jRP2cIvrbUoQdtoXVTYxCoR2NAD6NxpJ2lHVt1tSHc_7plh2t5v9xiR0FXpHRA1StnLapQJXl6lEma_jV9ADAgOxg</recordid><startdate>20190508</startdate><enddate>20190508</enddate><creator>Merritt, Elizabeth Catherine</creator><creator>Sauppe, Joshua Paul</creator><creator>Loomis, Eric Nicholas</creator><creator>Cardenas, Tana</creator><creator>Montgomery, David S.</creator><creator>Daughton, William Scott</creator><creator>Wilson, Douglas Carl</creator><creator>Kline, John L.</creator><creator>Khan, Shahab F.</creator><creator>Schoff, Mike</creator><creator>Hoppe, Martin</creator><creator>Fierro, Franklin</creator><creator>Randolph, Randall Blaine</creator><creator>Patterson, Brian M.</creator><creator>Kuettner, Lindsey Ann</creator><creator>Sacks, Ryan Foster</creator><creator>Dodd, Evan S.</creator><creator>Wan, Willow Chilim</creator><creator>Palaniyappan, Sasikumar</creator><creator>Batha, Steven H.</creator><creator>Keiter, Paul Arthur</creator><creator>Rygg, J. Ryan</creator><creator>Smalyuk, Vladimir</creator><creator>Ping, Yuan</creator><creator>Amendt, Peter</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000310517559</orcidid><orcidid>https://orcid.org/0000000199711846</orcidid><orcidid>https://orcid.org/0000000192447376</orcidid><orcidid>https://orcid.org/0000000290260070</orcidid><orcidid>https://orcid.org/0000000239944194</orcidid><orcidid>https://orcid.org/0000000308989178</orcidid><orcidid>https://orcid.org/0000000206057847</orcidid><orcidid>https://orcid.org/0000000153537483</orcidid><orcidid>https://orcid.org/0000000223556242</orcidid><orcidid>https://orcid.org/0000000222719919</orcidid><orcidid>https://orcid.org/0000000320951383</orcidid><orcidid>https://orcid.org/0000000273956527</orcidid><orcidid>https://orcid.org/0000000218231013</orcidid><orcidid>https://orcid.org/0000000208029356</orcidid><orcidid>https://orcid.org/0000000332080538</orcidid><orcidid>https://orcid.org/0000000188744458</orcidid><orcidid>https://orcid.org/0000000207594476</orcidid><orcidid>https://orcid.org/0000000215071595</orcidid><orcidid>https://orcid.org/0000000182862904</orcidid><orcidid>https://orcid.org/0000000248799072</orcidid><orcidid>https://orcid.org/0000000163771206</orcidid></search><sort><creationdate>20190508</creationdate><title>Experimental study of energy transfer in double shell implosions</title><author>Merritt, Elizabeth Catherine ; Sauppe, Joshua Paul ; Loomis, Eric Nicholas ; Cardenas, Tana ; Montgomery, David S. ; Daughton, William Scott ; Wilson, Douglas Carl ; Kline, John L. ; Khan, Shahab F. ; Schoff, Mike ; Hoppe, Martin ; Fierro, Franklin ; Randolph, Randall Blaine ; Patterson, Brian M. ; Kuettner, Lindsey Ann ; Sacks, Ryan Foster ; Dodd, Evan S. ; Wan, Willow Chilim ; Palaniyappan, Sasikumar ; Batha, Steven H. ; Keiter, Paul Arthur ; Rygg, J. Ryan ; Smalyuk, Vladimir ; Ping, Yuan ; Amendt, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15327133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Double Shells</topic><topic>Radiation trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merritt, Elizabeth Catherine</creatorcontrib><creatorcontrib>Sauppe, Joshua Paul</creatorcontrib><creatorcontrib>Loomis, Eric Nicholas</creatorcontrib><creatorcontrib>Cardenas, Tana</creatorcontrib><creatorcontrib>Montgomery, David S.</creatorcontrib><creatorcontrib>Daughton, William Scott</creatorcontrib><creatorcontrib>Wilson, Douglas Carl</creatorcontrib><creatorcontrib>Kline, John L.</creatorcontrib><creatorcontrib>Khan, Shahab F.</creatorcontrib><creatorcontrib>Schoff, Mike</creatorcontrib><creatorcontrib>Hoppe, Martin</creatorcontrib><creatorcontrib>Fierro, Franklin</creatorcontrib><creatorcontrib>Randolph, Randall Blaine</creatorcontrib><creatorcontrib>Patterson, Brian M.</creatorcontrib><creatorcontrib>Kuettner, Lindsey Ann</creatorcontrib><creatorcontrib>Sacks, Ryan Foster</creatorcontrib><creatorcontrib>Dodd, Evan S.</creatorcontrib><creatorcontrib>Wan, Willow Chilim</creatorcontrib><creatorcontrib>Palaniyappan, Sasikumar</creatorcontrib><creatorcontrib>Batha, Steven H.</creatorcontrib><creatorcontrib>Keiter, Paul Arthur</creatorcontrib><creatorcontrib>Rygg, J. Ryan</creatorcontrib><creatorcontrib>Smalyuk, Vladimir</creatorcontrib><creatorcontrib>Ping, Yuan</creatorcontrib><creatorcontrib>Amendt, Peter</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merritt, Elizabeth Catherine</au><au>Sauppe, Joshua Paul</au><au>Loomis, Eric Nicholas</au><au>Cardenas, Tana</au><au>Montgomery, David S.</au><au>Daughton, William Scott</au><au>Wilson, Douglas Carl</au><au>Kline, John L.</au><au>Khan, Shahab F.</au><au>Schoff, Mike</au><au>Hoppe, Martin</au><au>Fierro, Franklin</au><au>Randolph, Randall Blaine</au><au>Patterson, Brian M.</au><au>Kuettner, Lindsey Ann</au><au>Sacks, Ryan Foster</au><au>Dodd, Evan S.</au><au>Wan, Willow Chilim</au><au>Palaniyappan, Sasikumar</au><au>Batha, Steven H.</au><au>Keiter, Paul Arthur</au><au>Rygg, J. Ryan</au><au>Smalyuk, Vladimir</au><au>Ping, Yuan</au><au>Amendt, Peter</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study of energy transfer in double shell implosions</atitle><jtitle>Physics of plasmas</jtitle><date>2019-05-08</date><risdate>2019</risdate><volume>26</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. Here, the measured energy transfer to the foam cushion and the inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22% ± 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27% ± 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to ~5%, without inclusion of higher order 2D and 3D effects.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000310517559</orcidid><orcidid>https://orcid.org/0000000199711846</orcidid><orcidid>https://orcid.org/0000000192447376</orcidid><orcidid>https://orcid.org/0000000290260070</orcidid><orcidid>https://orcid.org/0000000239944194</orcidid><orcidid>https://orcid.org/0000000308989178</orcidid><orcidid>https://orcid.org/0000000206057847</orcidid><orcidid>https://orcid.org/0000000153537483</orcidid><orcidid>https://orcid.org/0000000223556242</orcidid><orcidid>https://orcid.org/0000000222719919</orcidid><orcidid>https://orcid.org/0000000320951383</orcidid><orcidid>https://orcid.org/0000000273956527</orcidid><orcidid>https://orcid.org/0000000218231013</orcidid><orcidid>https://orcid.org/0000000208029356</orcidid><orcidid>https://orcid.org/0000000332080538</orcidid><orcidid>https://orcid.org/0000000188744458</orcidid><orcidid>https://orcid.org/0000000207594476</orcidid><orcidid>https://orcid.org/0000000215071595</orcidid><orcidid>https://orcid.org/0000000182862904</orcidid><orcidid>https://orcid.org/0000000248799072</orcidid><orcidid>https://orcid.org/0000000163771206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2019-05, Vol.26 (5) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1532713 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Double Shells Radiation trapping |
title | Experimental study of energy transfer in double shell implosions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T14%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20of%20energy%20transfer%20in%20double%20shell%20implosions&rft.jtitle=Physics%20of%20plasmas&rft.au=Merritt,%20Elizabeth%20Catherine&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2019-05-08&rft.volume=26&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/&rft_dat=%3Costi%3E1532713%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_15327133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |