Loading…

Cooperative Molecular Behavior Enhances the Thermal Conductance of Binary Self-Assembled Monolayer Junctions

The effect of the local molecular environment on thermal transport through organic–inorganic heterojunctions is investigated using binary self-assembled monolayer (SAM) junctions built from a mixture of alkanethiol and alkanedithiol species sandwiched between gold leads. Thermoreflectance measuremen...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2017-01, Vol.17 (1), p.220-227
Main Authors: Majumdar, Shubhaditya, Malen, Jonathan A, McGaughey, Alan J. H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a441t-52e6e44129397a238a8d67b1e22c34222495db881a69a936015352b053ec95883
cites cdi_FETCH-LOGICAL-a441t-52e6e44129397a238a8d67b1e22c34222495db881a69a936015352b053ec95883
container_end_page 227
container_issue 1
container_start_page 220
container_title Nano letters
container_volume 17
creator Majumdar, Shubhaditya
Malen, Jonathan A
McGaughey, Alan J. H
description The effect of the local molecular environment on thermal transport through organic–inorganic heterojunctions is investigated using binary self-assembled monolayer (SAM) junctions built from a mixture of alkanethiol and alkanedithiol species sandwiched between gold leads. Thermoreflectance measurements and molecular dynamics simulations demonstrate that the thermal conductances of the binary SAM junctions vary with molecular composition and are greater than predictions of a parallel resistance model. The enhancement results from increased thermal transport through the alkanethiols, whose terminal methyl groups are confined by the anchored alkanedithiols. This confinement effect extends over length scales that are more than twice the range of the van der Waals interactions between molecules and are commensurate to the sizes of experimentally observed molecular domains. Conversely, for a partially packed (i.e., submonolayer) alkanedithiol unary SAM, increasing the molecular packing density decreases the per molecule thermal conductance. This finding indicates that thermal transport measurements of SAMs cannot be used to predict the thermal transport properties of single molecules.
doi_str_mv 10.1021/acs.nanolett.6b03894
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1534774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1857753749</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-52e6e44129397a238a8d67b1e22c34222495db881a69a936015352b053ec95883</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0Eog_4BwhZrNhk8DO2l-2oUFARC8racpw7SirHHmynUv89Hs20S1a-kr9z7uMg9IGSDSWMfnG-bKKLKUCtm34gXBvxCp1TyUnXG8Nev9RanKGLUh4IIYZL8hadMU0UZ4qco7BNaQ_Z1fkR8M9m5tfgMr6GyT3OKeObOLnooeA6Ab6fIC8u4G2K4-rr4QOnHb6eo8tP-DeEXXdVCixDgLGZtdncE2T8Y42-zimWd-jNzoUC70_vJfrz9eZ-e9vd_fr2fXt11zkhaO0kgx5axQw3yjGunR57NVBgzHPBGBNGjoPW1PXGGd6TtqdkA5EcvJFa80v06eibSp1t8XMFP_kUI_hqGyyUEg36fIT2Of1doVS7zMVDCC5CWoulWioluRKmoeKI-pxKybCz-zwvbWdLiT2EYVsY9jkMewqjyT6eOqzDAuOL6Pn6DSBH4CB_SGuO7Sr_9_wHMkmYuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1857753749</pqid></control><display><type>article</type><title>Cooperative Molecular Behavior Enhances the Thermal Conductance of Binary Self-Assembled Monolayer Junctions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Majumdar, Shubhaditya ; Malen, Jonathan A ; McGaughey, Alan J. H</creator><creatorcontrib>Majumdar, Shubhaditya ; Malen, Jonathan A ; McGaughey, Alan J. H ; Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><description>The effect of the local molecular environment on thermal transport through organic–inorganic heterojunctions is investigated using binary self-assembled monolayer (SAM) junctions built from a mixture of alkanethiol and alkanedithiol species sandwiched between gold leads. Thermoreflectance measurements and molecular dynamics simulations demonstrate that the thermal conductances of the binary SAM junctions vary with molecular composition and are greater than predictions of a parallel resistance model. The enhancement results from increased thermal transport through the alkanethiols, whose terminal methyl groups are confined by the anchored alkanedithiols. This confinement effect extends over length scales that are more than twice the range of the van der Waals interactions between molecules and are commensurate to the sizes of experimentally observed molecular domains. Conversely, for a partially packed (i.e., submonolayer) alkanedithiol unary SAM, increasing the molecular packing density decreases the per molecule thermal conductance. This finding indicates that thermal transport measurements of SAMs cannot be used to predict the thermal transport properties of single molecules.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.6b03894</identifier><identifier>PMID: 28073270</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science ; Physics ; Science &amp; Technology - Other Topics</subject><ispartof>Nano letters, 2017-01, Vol.17 (1), p.220-227</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-52e6e44129397a238a8d67b1e22c34222495db881a69a936015352b053ec95883</citedby><cites>FETCH-LOGICAL-a441t-52e6e44129397a238a8d67b1e22c34222495db881a69a936015352b053ec95883</cites><orcidid>0000-0001-9342-7975 ; 0000000193427975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28073270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1534774$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Majumdar, Shubhaditya</creatorcontrib><creatorcontrib>Malen, Jonathan A</creatorcontrib><creatorcontrib>McGaughey, Alan J. H</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><title>Cooperative Molecular Behavior Enhances the Thermal Conductance of Binary Self-Assembled Monolayer Junctions</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The effect of the local molecular environment on thermal transport through organic–inorganic heterojunctions is investigated using binary self-assembled monolayer (SAM) junctions built from a mixture of alkanethiol and alkanedithiol species sandwiched between gold leads. Thermoreflectance measurements and molecular dynamics simulations demonstrate that the thermal conductances of the binary SAM junctions vary with molecular composition and are greater than predictions of a parallel resistance model. The enhancement results from increased thermal transport through the alkanethiols, whose terminal methyl groups are confined by the anchored alkanedithiols. This confinement effect extends over length scales that are more than twice the range of the van der Waals interactions between molecules and are commensurate to the sizes of experimentally observed molecular domains. Conversely, for a partially packed (i.e., submonolayer) alkanedithiol unary SAM, increasing the molecular packing density decreases the per molecule thermal conductance. This finding indicates that thermal transport measurements of SAMs cannot be used to predict the thermal transport properties of single molecules.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Science &amp; Technology - Other Topics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0Eog_4BwhZrNhk8DO2l-2oUFARC8racpw7SirHHmynUv89Hs20S1a-kr9z7uMg9IGSDSWMfnG-bKKLKUCtm34gXBvxCp1TyUnXG8Nev9RanKGLUh4IIYZL8hadMU0UZ4qco7BNaQ_Z1fkR8M9m5tfgMr6GyT3OKeObOLnooeA6Ab6fIC8u4G2K4-rr4QOnHb6eo8tP-DeEXXdVCixDgLGZtdncE2T8Y42-zimWd-jNzoUC70_vJfrz9eZ-e9vd_fr2fXt11zkhaO0kgx5axQw3yjGunR57NVBgzHPBGBNGjoPW1PXGGd6TtqdkA5EcvJFa80v06eibSp1t8XMFP_kUI_hqGyyUEg36fIT2Of1doVS7zMVDCC5CWoulWioluRKmoeKI-pxKybCz-zwvbWdLiT2EYVsY9jkMewqjyT6eOqzDAuOL6Pn6DSBH4CB_SGuO7Sr_9_wHMkmYuA</recordid><startdate>20170111</startdate><enddate>20170111</enddate><creator>Majumdar, Shubhaditya</creator><creator>Malen, Jonathan A</creator><creator>McGaughey, Alan J. H</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9342-7975</orcidid><orcidid>https://orcid.org/0000000193427975</orcidid></search><sort><creationdate>20170111</creationdate><title>Cooperative Molecular Behavior Enhances the Thermal Conductance of Binary Self-Assembled Monolayer Junctions</title><author>Majumdar, Shubhaditya ; Malen, Jonathan A ; McGaughey, Alan J. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-52e6e44129397a238a8d67b1e22c34222495db881a69a936015352b053ec95883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majumdar, Shubhaditya</creatorcontrib><creatorcontrib>Malen, Jonathan A</creatorcontrib><creatorcontrib>McGaughey, Alan J. H</creatorcontrib><creatorcontrib>Carnegie Mellon Univ., Pittsburgh, PA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majumdar, Shubhaditya</au><au>Malen, Jonathan A</au><au>McGaughey, Alan J. H</au><aucorp>Carnegie Mellon Univ., Pittsburgh, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative Molecular Behavior Enhances the Thermal Conductance of Binary Self-Assembled Monolayer Junctions</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-01-11</date><risdate>2017</risdate><volume>17</volume><issue>1</issue><spage>220</spage><epage>227</epage><pages>220-227</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The effect of the local molecular environment on thermal transport through organic–inorganic heterojunctions is investigated using binary self-assembled monolayer (SAM) junctions built from a mixture of alkanethiol and alkanedithiol species sandwiched between gold leads. Thermoreflectance measurements and molecular dynamics simulations demonstrate that the thermal conductances of the binary SAM junctions vary with molecular composition and are greater than predictions of a parallel resistance model. The enhancement results from increased thermal transport through the alkanethiols, whose terminal methyl groups are confined by the anchored alkanedithiols. This confinement effect extends over length scales that are more than twice the range of the van der Waals interactions between molecules and are commensurate to the sizes of experimentally observed molecular domains. Conversely, for a partially packed (i.e., submonolayer) alkanedithiol unary SAM, increasing the molecular packing density decreases the per molecule thermal conductance. This finding indicates that thermal transport measurements of SAMs cannot be used to predict the thermal transport properties of single molecules.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28073270</pmid><doi>10.1021/acs.nanolett.6b03894</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9342-7975</orcidid><orcidid>https://orcid.org/0000000193427975</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2017-01, Vol.17 (1), p.220-227
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1534774
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Materials Science
Physics
Science & Technology - Other Topics
title Cooperative Molecular Behavior Enhances the Thermal Conductance of Binary Self-Assembled Monolayer Junctions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20Molecular%20Behavior%20Enhances%20the%20Thermal%20Conductance%20of%20Binary%20Self-Assembled%20Monolayer%20Junctions&rft.jtitle=Nano%20letters&rft.au=Majumdar,%20Shubhaditya&rft.aucorp=Carnegie%20Mellon%20Univ.,%20Pittsburgh,%20PA%20(United%20States)&rft.date=2017-01-11&rft.volume=17&rft.issue=1&rft.spage=220&rft.epage=227&rft.pages=220-227&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.6b03894&rft_dat=%3Cproquest_osti_%3E1857753749%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a441t-52e6e44129397a238a8d67b1e22c34222495db881a69a936015352b053ec95883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1857753749&rft_id=info:pmid/28073270&rfr_iscdi=true