Loading…
Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization
Control over polymer sequence and architecture is crucial to both understanding structure–property relationships and designing functional materials. In pursuit of these goals, we developed a new synthetic approach that enables facile manipulation of the density and distribution of grafts in polymers...
Saved in:
Published in: | Journal of the American Chemical Society 2017-03, Vol.139 (10), p.3896-3903 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a388t-6bfdaa21d1b197f2f066ab3876e8510087afb0dc902f71842b8c1e12be1bcac03 |
---|---|
cites | cdi_FETCH-LOGICAL-a388t-6bfdaa21d1b197f2f066ab3876e8510087afb0dc902f71842b8c1e12be1bcac03 |
container_end_page | 3903 |
container_issue | 10 |
container_start_page | 3896 |
container_title | Journal of the American Chemical Society |
container_volume | 139 |
creator | Lin, Tzu-Pin Chang, Alice B Chen, Hsiang-Yun Liberman-Martin, Allegra L Bates, Christopher M Voegtle, Matthew J Bauer, Christina A Grubbs, Robert H |
description | Control over polymer sequence and architecture is crucial to both understanding structure–property relationships and designing functional materials. In pursuit of these goals, we developed a new synthetic approach that enables facile manipulation of the density and distribution of grafts in polymers via living ring-opening metathesis polymerization (ROMP). Discrete endo,exo-norbornenyl dialkylesters (dimethyl DME, diethyl DEE, di-n-butyl DBE) were strategically designed to copolymerize with a norbornene-functionalized polystyrene (PS), polylactide (PLA), or polydimethylsiloxane (PDMS) macromonomer mediated by the third-generation metathesis catalyst (G3). The small-molecule diesters act as diluents that increase the average distance between grafted side chains, generating polymers with variable grafting density. The grafting density (number of side chains/number of norbornene backbone repeats) could be straightforwardly controlled by the macromonomer/diluent feed ratio. To gain insight into the copolymer sequence and architecture, self-propagation and cross-propagation rate constants were determined according to a terminal copolymerization model. These kinetic analyses suggest that copolymerizing a macromonomer/diluent pair with evenly matched self-propagation rate constants favors randomly distributed side chains. As the disparity between macromonomer and diluent homopolymerization rates increases, the reactivity ratios depart from unity, leading to an increase in gradient tendency. To demonstrate the effectiveness of our method, an array of monodisperse polymers (PLA x -ran-DME 1‑x ) n bearing variable grafting densities (x = 1.0, 0.75, 0.5, 0.25) and total backbone degrees of polymerization (n = 167, 133, 100, 67, 33) were synthesized. The approach disclosed in this work therefore constitutes a powerful strategy for the synthesis of polymers spanning the linear-to-bottlebrush regimes with controlled grafting density and side chain distribution, molecular attributes that dictate micro- and macroscopic properties. |
doi_str_mv | 10.1021/jacs.7b00791 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1535003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1870646365</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-6bfdaa21d1b197f2f066ab3876e8510087afb0dc902f71842b8c1e12be1bcac03</originalsourceid><addsrcrecordid>eNptkUFv1DAQhS0Eape2N87I4sSBlBln43iPaAul0qKiqj1btmNTr7L21nYqLb-eRFng0suMRvreG-k9Qt4hXCIw_LxVJl-2GqBd4SuywIZB1SDjr8kCAFjVCl6fkrc5b8dzyQSekFMmGEOoYUGe1jGUFHsaHb1OyhUfftErG7IvB6pCR698LsnrofgYqA8zRH_G_rCzKVN9oBv_PInuxlHd7m2Yjh-2qPJos890Hfcz7H-ryeScvHGqz_biuM_Iw7ev9-vv1eb2-mb9ZVOpWohSce06pRh2qHHVOuaAc6Vr0XIrGgQQrXIaOrMC5loUS6aFQYtMW9RGGajPyIfZN-biZTa-WPNoYgjWFIlN3QDUI_RxhvYpPg02F7nz2di-V8HGIUsULfAlr3kzop9m1KSYc7JO7pPfqXSQCHJqQk5NyGMTI_7-6Dzone3-wX-j__96Um3jkMKYxstefwCMAZKt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1870646365</pqid></control><display><type>article</type><title>Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lin, Tzu-Pin ; Chang, Alice B ; Chen, Hsiang-Yun ; Liberman-Martin, Allegra L ; Bates, Christopher M ; Voegtle, Matthew J ; Bauer, Christina A ; Grubbs, Robert H</creator><creatorcontrib>Lin, Tzu-Pin ; Chang, Alice B ; Chen, Hsiang-Yun ; Liberman-Martin, Allegra L ; Bates, Christopher M ; Voegtle, Matthew J ; Bauer, Christina A ; Grubbs, Robert H ; Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><description>Control over polymer sequence and architecture is crucial to both understanding structure–property relationships and designing functional materials. In pursuit of these goals, we developed a new synthetic approach that enables facile manipulation of the density and distribution of grafts in polymers via living ring-opening metathesis polymerization (ROMP). Discrete endo,exo-norbornenyl dialkylesters (dimethyl DME, diethyl DEE, di-n-butyl DBE) were strategically designed to copolymerize with a norbornene-functionalized polystyrene (PS), polylactide (PLA), or polydimethylsiloxane (PDMS) macromonomer mediated by the third-generation metathesis catalyst (G3). The small-molecule diesters act as diluents that increase the average distance between grafted side chains, generating polymers with variable grafting density. The grafting density (number of side chains/number of norbornene backbone repeats) could be straightforwardly controlled by the macromonomer/diluent feed ratio. To gain insight into the copolymer sequence and architecture, self-propagation and cross-propagation rate constants were determined according to a terminal copolymerization model. These kinetic analyses suggest that copolymerizing a macromonomer/diluent pair with evenly matched self-propagation rate constants favors randomly distributed side chains. As the disparity between macromonomer and diluent homopolymerization rates increases, the reactivity ratios depart from unity, leading to an increase in gradient tendency. To demonstrate the effectiveness of our method, an array of monodisperse polymers (PLA x -ran-DME 1‑x ) n bearing variable grafting densities (x = 1.0, 0.75, 0.5, 0.25) and total backbone degrees of polymerization (n = 167, 133, 100, 67, 33) were synthesized. The approach disclosed in this work therefore constitutes a powerful strategy for the synthesis of polymers spanning the linear-to-bottlebrush regimes with controlled grafting density and side chain distribution, molecular attributes that dictate micro- and macroscopic properties.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b00791</identifier><identifier>PMID: 28221030</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry</subject><ispartof>Journal of the American Chemical Society, 2017-03, Vol.139 (10), p.3896-3903</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-6bfdaa21d1b197f2f066ab3876e8510087afb0dc902f71842b8c1e12be1bcac03</citedby><cites>FETCH-LOGICAL-a388t-6bfdaa21d1b197f2f066ab3876e8510087afb0dc902f71842b8c1e12be1bcac03</cites><orcidid>0000-0001-7041-7213 ; 0000-0002-0057-7817 ; 0000000200577817 ; 0000000170417213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28221030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1535003$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Tzu-Pin</creatorcontrib><creatorcontrib>Chang, Alice B</creatorcontrib><creatorcontrib>Chen, Hsiang-Yun</creatorcontrib><creatorcontrib>Liberman-Martin, Allegra L</creatorcontrib><creatorcontrib>Bates, Christopher M</creatorcontrib><creatorcontrib>Voegtle, Matthew J</creatorcontrib><creatorcontrib>Bauer, Christina A</creatorcontrib><creatorcontrib>Grubbs, Robert H</creatorcontrib><creatorcontrib>Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><title>Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Control over polymer sequence and architecture is crucial to both understanding structure–property relationships and designing functional materials. In pursuit of these goals, we developed a new synthetic approach that enables facile manipulation of the density and distribution of grafts in polymers via living ring-opening metathesis polymerization (ROMP). Discrete endo,exo-norbornenyl dialkylesters (dimethyl DME, diethyl DEE, di-n-butyl DBE) were strategically designed to copolymerize with a norbornene-functionalized polystyrene (PS), polylactide (PLA), or polydimethylsiloxane (PDMS) macromonomer mediated by the third-generation metathesis catalyst (G3). The small-molecule diesters act as diluents that increase the average distance between grafted side chains, generating polymers with variable grafting density. The grafting density (number of side chains/number of norbornene backbone repeats) could be straightforwardly controlled by the macromonomer/diluent feed ratio. To gain insight into the copolymer sequence and architecture, self-propagation and cross-propagation rate constants were determined according to a terminal copolymerization model. These kinetic analyses suggest that copolymerizing a macromonomer/diluent pair with evenly matched self-propagation rate constants favors randomly distributed side chains. As the disparity between macromonomer and diluent homopolymerization rates increases, the reactivity ratios depart from unity, leading to an increase in gradient tendency. To demonstrate the effectiveness of our method, an array of monodisperse polymers (PLA x -ran-DME 1‑x ) n bearing variable grafting densities (x = 1.0, 0.75, 0.5, 0.25) and total backbone degrees of polymerization (n = 167, 133, 100, 67, 33) were synthesized. The approach disclosed in this work therefore constitutes a powerful strategy for the synthesis of polymers spanning the linear-to-bottlebrush regimes with controlled grafting density and side chain distribution, molecular attributes that dictate micro- and macroscopic properties.</description><subject>Chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkUFv1DAQhS0Eape2N87I4sSBlBln43iPaAul0qKiqj1btmNTr7L21nYqLb-eRFng0suMRvreG-k9Qt4hXCIw_LxVJl-2GqBd4SuywIZB1SDjr8kCAFjVCl6fkrc5b8dzyQSekFMmGEOoYUGe1jGUFHsaHb1OyhUfftErG7IvB6pCR698LsnrofgYqA8zRH_G_rCzKVN9oBv_PInuxlHd7m2Yjh-2qPJos890Hfcz7H-ryeScvHGqz_biuM_Iw7ev9-vv1eb2-mb9ZVOpWohSce06pRh2qHHVOuaAc6Vr0XIrGgQQrXIaOrMC5loUS6aFQYtMW9RGGajPyIfZN-biZTa-WPNoYgjWFIlN3QDUI_RxhvYpPg02F7nz2di-V8HGIUsULfAlr3kzop9m1KSYc7JO7pPfqXSQCHJqQk5NyGMTI_7-6Dzone3-wX-j__96Um3jkMKYxstefwCMAZKt</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Lin, Tzu-Pin</creator><creator>Chang, Alice B</creator><creator>Chen, Hsiang-Yun</creator><creator>Liberman-Martin, Allegra L</creator><creator>Bates, Christopher M</creator><creator>Voegtle, Matthew J</creator><creator>Bauer, Christina A</creator><creator>Grubbs, Robert H</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7041-7213</orcidid><orcidid>https://orcid.org/0000-0002-0057-7817</orcidid><orcidid>https://orcid.org/0000000200577817</orcidid><orcidid>https://orcid.org/0000000170417213</orcidid></search><sort><creationdate>20170315</creationdate><title>Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization</title><author>Lin, Tzu-Pin ; Chang, Alice B ; Chen, Hsiang-Yun ; Liberman-Martin, Allegra L ; Bates, Christopher M ; Voegtle, Matthew J ; Bauer, Christina A ; Grubbs, Robert H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-6bfdaa21d1b197f2f066ab3876e8510087afb0dc902f71842b8c1e12be1bcac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Tzu-Pin</creatorcontrib><creatorcontrib>Chang, Alice B</creatorcontrib><creatorcontrib>Chen, Hsiang-Yun</creatorcontrib><creatorcontrib>Liberman-Martin, Allegra L</creatorcontrib><creatorcontrib>Bates, Christopher M</creatorcontrib><creatorcontrib>Voegtle, Matthew J</creatorcontrib><creatorcontrib>Bauer, Christina A</creatorcontrib><creatorcontrib>Grubbs, Robert H</creatorcontrib><creatorcontrib>Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Tzu-Pin</au><au>Chang, Alice B</au><au>Chen, Hsiang-Yun</au><au>Liberman-Martin, Allegra L</au><au>Bates, Christopher M</au><au>Voegtle, Matthew J</au><au>Bauer, Christina A</au><au>Grubbs, Robert H</au><aucorp>Univ. of Colorado, Boulder, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-03-15</date><risdate>2017</risdate><volume>139</volume><issue>10</issue><spage>3896</spage><epage>3903</epage><pages>3896-3903</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Control over polymer sequence and architecture is crucial to both understanding structure–property relationships and designing functional materials. In pursuit of these goals, we developed a new synthetic approach that enables facile manipulation of the density and distribution of grafts in polymers via living ring-opening metathesis polymerization (ROMP). Discrete endo,exo-norbornenyl dialkylesters (dimethyl DME, diethyl DEE, di-n-butyl DBE) were strategically designed to copolymerize with a norbornene-functionalized polystyrene (PS), polylactide (PLA), or polydimethylsiloxane (PDMS) macromonomer mediated by the third-generation metathesis catalyst (G3). The small-molecule diesters act as diluents that increase the average distance between grafted side chains, generating polymers with variable grafting density. The grafting density (number of side chains/number of norbornene backbone repeats) could be straightforwardly controlled by the macromonomer/diluent feed ratio. To gain insight into the copolymer sequence and architecture, self-propagation and cross-propagation rate constants were determined according to a terminal copolymerization model. These kinetic analyses suggest that copolymerizing a macromonomer/diluent pair with evenly matched self-propagation rate constants favors randomly distributed side chains. As the disparity between macromonomer and diluent homopolymerization rates increases, the reactivity ratios depart from unity, leading to an increase in gradient tendency. To demonstrate the effectiveness of our method, an array of monodisperse polymers (PLA x -ran-DME 1‑x ) n bearing variable grafting densities (x = 1.0, 0.75, 0.5, 0.25) and total backbone degrees of polymerization (n = 167, 133, 100, 67, 33) were synthesized. The approach disclosed in this work therefore constitutes a powerful strategy for the synthesis of polymers spanning the linear-to-bottlebrush regimes with controlled grafting density and side chain distribution, molecular attributes that dictate micro- and macroscopic properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28221030</pmid><doi>10.1021/jacs.7b00791</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7041-7213</orcidid><orcidid>https://orcid.org/0000-0002-0057-7817</orcidid><orcidid>https://orcid.org/0000000200577817</orcidid><orcidid>https://orcid.org/0000000170417213</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2017-03, Vol.139 (10), p.3896-3903 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1535003 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemistry |
title | Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Grafting%20Density%20and%20Distribution%20in%20Graft%20Polymers%20by%20Living%20Ring-Opening%20Metathesis%20Copolymerization&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lin,%20Tzu-Pin&rft.aucorp=Univ.%20of%20Colorado,%20Boulder,%20CO%20(United%20States)&rft.date=2017-03-15&rft.volume=139&rft.issue=10&rft.spage=3896&rft.epage=3903&rft.pages=3896-3903&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b00791&rft_dat=%3Cproquest_osti_%3E1870646365%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a388t-6bfdaa21d1b197f2f066ab3876e8510087afb0dc902f71842b8c1e12be1bcac03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1870646365&rft_id=info:pmid/28221030&rfr_iscdi=true |