Loading…

Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery

A novel thermotransformable controlled polymer system (tPPG) is developed that can be injected into fractures or fracturelike features as a millimeter-sized particle gel (100 μm to a few millimeters) and acts as a plugging agent, then dissolves into linear polymer at a designated period (e.g., 6 mon...

Full description

Saved in:
Bibliographic Details
Published in:Energy & fuels 2017-12, Vol.31 (12), p.13600-13609
Main Authors: Pu, Jingyang, Zhou, Jia, Chen, Yashu, Bai, Baojun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3
cites cdi_FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3
container_end_page 13609
container_issue 12
container_start_page 13600
container_title Energy & fuels
container_volume 31
creator Pu, Jingyang
Zhou, Jia
Chen, Yashu
Bai, Baojun
description A novel thermotransformable controlled polymer system (tPPG) is developed that can be injected into fractures or fracturelike features as a millimeter-sized particle gel (100 μm to a few millimeters) and acts as a plugging agent, then dissolves into linear polymer at a designated period (e.g., 6 months), because of the reservoir’s temperature. The dissolved polymer seeps into the depth of the formation and performs as a mobility control agent with high viscosity. Working together with permanent cross-linking the polymer, polyethylene glycol diacrylate 200 (PEG-200) entails the role of controlling dissolution time which has been added into the tPPG as a labile cross-linker. The polymer’s viscosity will not be influenced by the shearing stress during pumping or salinity in the reservoir. The time tPPG requires for transformation is dependent primarily upon the reservoir temperature and labile cross-linker concentration. This strategy offers a facile and economic approach to fabricating a promising dual-functional polymer system. In order to evaluate our proposed approach, main properties of the tPPG polymer are probed, including the swelling ratio, mechanical strength, and thermostability before transformation, viscosity, moving ability, and mobility control ability after transformation.
doi_str_mv 10.1021/acs.energyfuels.7b03202
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f49463713</sourcerecordid><originalsourceid>FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoenjGyq6dzqSLD-WJU2bQiC0pGshy-PEQZaC5AT893VIFt2VWdzFnDswh5AnBlMGnL1oE6foMGyG5oA2TvMKBAd-RSZMckgk8PKaTKAo8gQynt6Suxh3AJCJQk7I1xse0fp9h66nvqHrLYbO90G72PjQ6coinXnXB28t1nQx1MFv0NJxSeduq51p3YauWku_0fgjhuGB3DTaRny85D35eZ-vZ4tkufr4nL0uEy0y2Sc5akQDtTCYY1bV0nBdsBwrljYpZsBTI7mUdV5XOA5AWWacVyUTGjKZNeKePJ_v-ti3Kpq2R7M13jk0vWJSlCDSEcrPkAk-xoCN2oe202FQDNRJnxr1qT_61EXf2BTn5gnY-UNw4zP_tn4BjWl73Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Pu, Jingyang ; Zhou, Jia ; Chen, Yashu ; Bai, Baojun</creator><creatorcontrib>Pu, Jingyang ; Zhou, Jia ; Chen, Yashu ; Bai, Baojun ; Univ. of Missouri, Columbia, MO (United States)</creatorcontrib><description>A novel thermotransformable controlled polymer system (tPPG) is developed that can be injected into fractures or fracturelike features as a millimeter-sized particle gel (100 μm to a few millimeters) and acts as a plugging agent, then dissolves into linear polymer at a designated period (e.g., 6 months), because of the reservoir’s temperature. The dissolved polymer seeps into the depth of the formation and performs as a mobility control agent with high viscosity. Working together with permanent cross-linking the polymer, polyethylene glycol diacrylate 200 (PEG-200) entails the role of controlling dissolution time which has been added into the tPPG as a labile cross-linker. The polymer’s viscosity will not be influenced by the shearing stress during pumping or salinity in the reservoir. The time tPPG requires for transformation is dependent primarily upon the reservoir temperature and labile cross-linker concentration. This strategy offers a facile and economic approach to fabricating a promising dual-functional polymer system. In order to evaluate our proposed approach, main properties of the tPPG polymer are probed, including the swelling ratio, mechanical strength, and thermostability before transformation, viscosity, moving ability, and mobility control ability after transformation.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.7b03202</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy &amp; Fuels ; Engineering</subject><ispartof>Energy &amp; fuels, 2017-12, Vol.31 (12), p.13600-13609</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3</citedby><cites>FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3</cites><orcidid>0000-0002-6883-340X ; 0000-0002-3551-4787 ; 000000026883340X ; 0000000235514787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1539034$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pu, Jingyang</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Chen, Yashu</creatorcontrib><creatorcontrib>Bai, Baojun</creatorcontrib><creatorcontrib>Univ. of Missouri, Columbia, MO (United States)</creatorcontrib><title>Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>A novel thermotransformable controlled polymer system (tPPG) is developed that can be injected into fractures or fracturelike features as a millimeter-sized particle gel (100 μm to a few millimeters) and acts as a plugging agent, then dissolves into linear polymer at a designated period (e.g., 6 months), because of the reservoir’s temperature. The dissolved polymer seeps into the depth of the formation and performs as a mobility control agent with high viscosity. Working together with permanent cross-linking the polymer, polyethylene glycol diacrylate 200 (PEG-200) entails the role of controlling dissolution time which has been added into the tPPG as a labile cross-linker. The polymer’s viscosity will not be influenced by the shearing stress during pumping or salinity in the reservoir. The time tPPG requires for transformation is dependent primarily upon the reservoir temperature and labile cross-linker concentration. This strategy offers a facile and economic approach to fabricating a promising dual-functional polymer system. In order to evaluate our proposed approach, main properties of the tPPG polymer are probed, including the swelling ratio, mechanical strength, and thermostability before transformation, viscosity, moving ability, and mobility control ability after transformation.</description><subject>Energy &amp; Fuels</subject><subject>Engineering</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoenjGyq6dzqSLD-WJU2bQiC0pGshy-PEQZaC5AT893VIFt2VWdzFnDswh5AnBlMGnL1oE6foMGyG5oA2TvMKBAd-RSZMckgk8PKaTKAo8gQynt6Suxh3AJCJQk7I1xse0fp9h66nvqHrLYbO90G72PjQ6coinXnXB28t1nQx1MFv0NJxSeduq51p3YauWku_0fgjhuGB3DTaRny85D35eZ-vZ4tkufr4nL0uEy0y2Sc5akQDtTCYY1bV0nBdsBwrljYpZsBTI7mUdV5XOA5AWWacVyUTGjKZNeKePJ_v-ti3Kpq2R7M13jk0vWJSlCDSEcrPkAk-xoCN2oe202FQDNRJnxr1qT_61EXf2BTn5gnY-UNw4zP_tn4BjWl73Q</recordid><startdate>20171221</startdate><enddate>20171221</enddate><creator>Pu, Jingyang</creator><creator>Zhou, Jia</creator><creator>Chen, Yashu</creator><creator>Bai, Baojun</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6883-340X</orcidid><orcidid>https://orcid.org/0000-0002-3551-4787</orcidid><orcidid>https://orcid.org/000000026883340X</orcidid><orcidid>https://orcid.org/0000000235514787</orcidid></search><sort><creationdate>20171221</creationdate><title>Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery</title><author>Pu, Jingyang ; Zhou, Jia ; Chen, Yashu ; Bai, Baojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Energy &amp; Fuels</topic><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Jingyang</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Chen, Yashu</creatorcontrib><creatorcontrib>Bai, Baojun</creatorcontrib><creatorcontrib>Univ. of Missouri, Columbia, MO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Jingyang</au><au>Zhou, Jia</au><au>Chen, Yashu</au><au>Bai, Baojun</au><aucorp>Univ. of Missouri, Columbia, MO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2017-12-21</date><risdate>2017</risdate><volume>31</volume><issue>12</issue><spage>13600</spage><epage>13609</epage><pages>13600-13609</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>A novel thermotransformable controlled polymer system (tPPG) is developed that can be injected into fractures or fracturelike features as a millimeter-sized particle gel (100 μm to a few millimeters) and acts as a plugging agent, then dissolves into linear polymer at a designated period (e.g., 6 months), because of the reservoir’s temperature. The dissolved polymer seeps into the depth of the formation and performs as a mobility control agent with high viscosity. Working together with permanent cross-linking the polymer, polyethylene glycol diacrylate 200 (PEG-200) entails the role of controlling dissolution time which has been added into the tPPG as a labile cross-linker. The polymer’s viscosity will not be influenced by the shearing stress during pumping or salinity in the reservoir. The time tPPG requires for transformation is dependent primarily upon the reservoir temperature and labile cross-linker concentration. This strategy offers a facile and economic approach to fabricating a promising dual-functional polymer system. In order to evaluate our proposed approach, main properties of the tPPG polymer are probed, including the swelling ratio, mechanical strength, and thermostability before transformation, viscosity, moving ability, and mobility control ability after transformation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.7b03202</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6883-340X</orcidid><orcidid>https://orcid.org/0000-0002-3551-4787</orcidid><orcidid>https://orcid.org/000000026883340X</orcidid><orcidid>https://orcid.org/0000000235514787</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2017-12, Vol.31 (12), p.13600-13609
issn 0887-0624
1520-5029
language eng
recordid cdi_osti_scitechconnect_1539034
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy & Fuels
Engineering
title Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Thermotransformable%20Controlled%20Hydrogel%20for%20Enhancing%20Oil%20Recovery&rft.jtitle=Energy%20&%20fuels&rft.au=Pu,%20Jingyang&rft.aucorp=Univ.%20of%20Missouri,%20Columbia,%20MO%20(United%20States)&rft.date=2017-12-21&rft.volume=31&rft.issue=12&rft.spage=13600&rft.epage=13609&rft.pages=13600-13609&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.7b03202&rft_dat=%3Cacs_osti_%3Ef49463713%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true