Loading…
Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery
A novel thermotransformable controlled polymer system (tPPG) is developed that can be injected into fractures or fracturelike features as a millimeter-sized particle gel (100 μm to a few millimeters) and acts as a plugging agent, then dissolves into linear polymer at a designated period (e.g., 6 mon...
Saved in:
Published in: | Energy & fuels 2017-12, Vol.31 (12), p.13600-13609 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3 |
container_end_page | 13609 |
container_issue | 12 |
container_start_page | 13600 |
container_title | Energy & fuels |
container_volume | 31 |
creator | Pu, Jingyang Zhou, Jia Chen, Yashu Bai, Baojun |
description | A novel thermotransformable controlled polymer system (tPPG) is developed that can be injected into fractures or fracturelike features as a millimeter-sized particle gel (100 μm to a few millimeters) and acts as a plugging agent, then dissolves into linear polymer at a designated period (e.g., 6 months), because of the reservoir’s temperature. The dissolved polymer seeps into the depth of the formation and performs as a mobility control agent with high viscosity. Working together with permanent cross-linking the polymer, polyethylene glycol diacrylate 200 (PEG-200) entails the role of controlling dissolution time which has been added into the tPPG as a labile cross-linker. The polymer’s viscosity will not be influenced by the shearing stress during pumping or salinity in the reservoir. The time tPPG requires for transformation is dependent primarily upon the reservoir temperature and labile cross-linker concentration. This strategy offers a facile and economic approach to fabricating a promising dual-functional polymer system. In order to evaluate our proposed approach, main properties of the tPPG polymer are probed, including the swelling ratio, mechanical strength, and thermostability before transformation, viscosity, moving ability, and mobility control ability after transformation. |
doi_str_mv | 10.1021/acs.energyfuels.7b03202 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f49463713</sourcerecordid><originalsourceid>FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoenjGyq6dzqSLD-WJU2bQiC0pGshy-PEQZaC5AT893VIFt2VWdzFnDswh5AnBlMGnL1oE6foMGyG5oA2TvMKBAd-RSZMckgk8PKaTKAo8gQynt6Suxh3AJCJQk7I1xse0fp9h66nvqHrLYbO90G72PjQ6coinXnXB28t1nQx1MFv0NJxSeduq51p3YauWku_0fgjhuGB3DTaRny85D35eZ-vZ4tkufr4nL0uEy0y2Sc5akQDtTCYY1bV0nBdsBwrljYpZsBTI7mUdV5XOA5AWWacVyUTGjKZNeKePJ_v-ti3Kpq2R7M13jk0vWJSlCDSEcrPkAk-xoCN2oe202FQDNRJnxr1qT_61EXf2BTn5gnY-UNw4zP_tn4BjWl73Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Pu, Jingyang ; Zhou, Jia ; Chen, Yashu ; Bai, Baojun</creator><creatorcontrib>Pu, Jingyang ; Zhou, Jia ; Chen, Yashu ; Bai, Baojun ; Univ. of Missouri, Columbia, MO (United States)</creatorcontrib><description>A novel thermotransformable controlled polymer system (tPPG) is developed that can be injected into fractures or fracturelike features as a millimeter-sized particle gel (100 μm to a few millimeters) and acts as a plugging agent, then dissolves into linear polymer at a designated period (e.g., 6 months), because of the reservoir’s temperature. The dissolved polymer seeps into the depth of the formation and performs as a mobility control agent with high viscosity. Working together with permanent cross-linking the polymer, polyethylene glycol diacrylate 200 (PEG-200) entails the role of controlling dissolution time which has been added into the tPPG as a labile cross-linker. The polymer’s viscosity will not be influenced by the shearing stress during pumping or salinity in the reservoir. The time tPPG requires for transformation is dependent primarily upon the reservoir temperature and labile cross-linker concentration. This strategy offers a facile and economic approach to fabricating a promising dual-functional polymer system. In order to evaluate our proposed approach, main properties of the tPPG polymer are probed, including the swelling ratio, mechanical strength, and thermostability before transformation, viscosity, moving ability, and mobility control ability after transformation.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.7b03202</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy & Fuels ; Engineering</subject><ispartof>Energy & fuels, 2017-12, Vol.31 (12), p.13600-13609</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3</citedby><cites>FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3</cites><orcidid>0000-0002-6883-340X ; 0000-0002-3551-4787 ; 000000026883340X ; 0000000235514787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1539034$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pu, Jingyang</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Chen, Yashu</creatorcontrib><creatorcontrib>Bai, Baojun</creatorcontrib><creatorcontrib>Univ. of Missouri, Columbia, MO (United States)</creatorcontrib><title>Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery</title><title>Energy & fuels</title><addtitle>Energy Fuels</addtitle><description>A novel thermotransformable controlled polymer system (tPPG) is developed that can be injected into fractures or fracturelike features as a millimeter-sized particle gel (100 μm to a few millimeters) and acts as a plugging agent, then dissolves into linear polymer at a designated period (e.g., 6 months), because of the reservoir’s temperature. The dissolved polymer seeps into the depth of the formation and performs as a mobility control agent with high viscosity. Working together with permanent cross-linking the polymer, polyethylene glycol diacrylate 200 (PEG-200) entails the role of controlling dissolution time which has been added into the tPPG as a labile cross-linker. The polymer’s viscosity will not be influenced by the shearing stress during pumping or salinity in the reservoir. The time tPPG requires for transformation is dependent primarily upon the reservoir temperature and labile cross-linker concentration. This strategy offers a facile and economic approach to fabricating a promising dual-functional polymer system. In order to evaluate our proposed approach, main properties of the tPPG polymer are probed, including the swelling ratio, mechanical strength, and thermostability before transformation, viscosity, moving ability, and mobility control ability after transformation.</description><subject>Energy & Fuels</subject><subject>Engineering</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoenjGyq6dzqSLD-WJU2bQiC0pGshy-PEQZaC5AT893VIFt2VWdzFnDswh5AnBlMGnL1oE6foMGyG5oA2TvMKBAd-RSZMckgk8PKaTKAo8gQynt6Suxh3AJCJQk7I1xse0fp9h66nvqHrLYbO90G72PjQ6coinXnXB28t1nQx1MFv0NJxSeduq51p3YauWku_0fgjhuGB3DTaRny85D35eZ-vZ4tkufr4nL0uEy0y2Sc5akQDtTCYY1bV0nBdsBwrljYpZsBTI7mUdV5XOA5AWWacVyUTGjKZNeKePJ_v-ti3Kpq2R7M13jk0vWJSlCDSEcrPkAk-xoCN2oe202FQDNRJnxr1qT_61EXf2BTn5gnY-UNw4zP_tn4BjWl73Q</recordid><startdate>20171221</startdate><enddate>20171221</enddate><creator>Pu, Jingyang</creator><creator>Zhou, Jia</creator><creator>Chen, Yashu</creator><creator>Bai, Baojun</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6883-340X</orcidid><orcidid>https://orcid.org/0000-0002-3551-4787</orcidid><orcidid>https://orcid.org/000000026883340X</orcidid><orcidid>https://orcid.org/0000000235514787</orcidid></search><sort><creationdate>20171221</creationdate><title>Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery</title><author>Pu, Jingyang ; Zhou, Jia ; Chen, Yashu ; Bai, Baojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Energy & Fuels</topic><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Jingyang</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Chen, Yashu</creatorcontrib><creatorcontrib>Bai, Baojun</creatorcontrib><creatorcontrib>Univ. of Missouri, Columbia, MO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Jingyang</au><au>Zhou, Jia</au><au>Chen, Yashu</au><au>Bai, Baojun</au><aucorp>Univ. of Missouri, Columbia, MO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery</atitle><jtitle>Energy & fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2017-12-21</date><risdate>2017</risdate><volume>31</volume><issue>12</issue><spage>13600</spage><epage>13609</epage><pages>13600-13609</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>A novel thermotransformable controlled polymer system (tPPG) is developed that can be injected into fractures or fracturelike features as a millimeter-sized particle gel (100 μm to a few millimeters) and acts as a plugging agent, then dissolves into linear polymer at a designated period (e.g., 6 months), because of the reservoir’s temperature. The dissolved polymer seeps into the depth of the formation and performs as a mobility control agent with high viscosity. Working together with permanent cross-linking the polymer, polyethylene glycol diacrylate 200 (PEG-200) entails the role of controlling dissolution time which has been added into the tPPG as a labile cross-linker. The polymer’s viscosity will not be influenced by the shearing stress during pumping or salinity in the reservoir. The time tPPG requires for transformation is dependent primarily upon the reservoir temperature and labile cross-linker concentration. This strategy offers a facile and economic approach to fabricating a promising dual-functional polymer system. In order to evaluate our proposed approach, main properties of the tPPG polymer are probed, including the swelling ratio, mechanical strength, and thermostability before transformation, viscosity, moving ability, and mobility control ability after transformation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.7b03202</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6883-340X</orcidid><orcidid>https://orcid.org/0000-0002-3551-4787</orcidid><orcidid>https://orcid.org/000000026883340X</orcidid><orcidid>https://orcid.org/0000000235514787</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-0624 |
ispartof | Energy & fuels, 2017-12, Vol.31 (12), p.13600-13609 |
issn | 0887-0624 1520-5029 |
language | eng |
recordid | cdi_osti_scitechconnect_1539034 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Energy & Fuels Engineering |
title | Development of Thermotransformable Controlled Hydrogel for Enhancing Oil Recovery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Thermotransformable%20Controlled%20Hydrogel%20for%20Enhancing%20Oil%20Recovery&rft.jtitle=Energy%20&%20fuels&rft.au=Pu,%20Jingyang&rft.aucorp=Univ.%20of%20Missouri,%20Columbia,%20MO%20(United%20States)&rft.date=2017-12-21&rft.volume=31&rft.issue=12&rft.spage=13600&rft.epage=13609&rft.pages=13600-13609&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.7b03202&rft_dat=%3Cacs_osti_%3Ef49463713%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a365t-7eaeec0d3ce7e6bd5c2a817eb14f4e6024c5255d7dbebeb0099622b913a0656f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |