Loading…
High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions
Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realiza...
Saved in:
Published in: | Nano letters 2018-08, Vol.18 (8), p.4727-4733 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73 |
---|---|
cites | cdi_FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73 |
container_end_page | 4733 |
container_issue | 8 |
container_start_page | 4727 |
container_title | Nano letters |
container_volume | 18 |
creator | Gelbwaser-Klimovsky, David Aspuru-Guzik, Alán Thoss, Michael Peskin, Uri |
description | Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport. In this work, we focus on single-molecule junctions, demonstrating that their mechanical stability during resonant transport can be increased by increasing the bias voltage. This counter-intuitive effect is attributed to the energy dependence of the molecule–lead coupling densities, which promote the rate of transport-induced cooling of molecular vibrations at higher voltages. The required energy dependence is characteristic of realistic electrodes (such as graphene), which cannot be modeled within the commonly invoked wide-band approximation. Our research provides new guidelines for the design of mechanically stable molecular devices operating in the regime of resonant charge transport and demonstrates these guidelines while considering realistic features of single-molecule junctions. |
doi_str_mv | 10.1021/acs.nanolett.8b01127 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057440767</sourcerecordid><originalsourceid>FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EYv4DhCJWbFKeE6eJlxUCyiQWDFvLY2vk2iV2FvD1uGrLkpUtvXPvsw9CZxhGGCp8xWUcee6D0ymNOgEYV-0OOsRNDeWY0mr3796RA3QU4ycA0LqBfXRQ5XlNMByix6mdzcuP4BKf6XISo41Jq-JZyzn3VnJXvCYurLM_PNngi2CKV-tnTpfPebMcnC4eBi9Xs3iC9gx3UZ9uzmP0fnvzdj0tn17u7q8nTyWv2yaV1HRdVysiGtPUghpFKkLGRDVEKEOhAUUFGAFjVYEQVGICSksDpANqiG7rY3Sx7g0xWRalTfm1MnivZWL5z5TgOkOXa2jZh69Bx8QWNkrtHPc6DJFV0LSEQDte9ZE1KvsQY68NW_Z2wftvhoGtXLPsmm1ds43rHDvfbBjEQqu_0FZuBmANrOKfYeh9tvJ_5y_VxY4v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057440767</pqid></control><display><type>article</type><title>High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Gelbwaser-Klimovsky, David ; Aspuru-Guzik, Alán ; Thoss, Michael ; Peskin, Uri</creator><creatorcontrib>Gelbwaser-Klimovsky, David ; Aspuru-Guzik, Alán ; Thoss, Michael ; Peskin, Uri ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><description>Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport. In this work, we focus on single-molecule junctions, demonstrating that their mechanical stability during resonant transport can be increased by increasing the bias voltage. This counter-intuitive effect is attributed to the energy dependence of the molecule–lead coupling densities, which promote the rate of transport-induced cooling of molecular vibrations at higher voltages. The required energy dependence is characteristic of realistic electrodes (such as graphene), which cannot be modeled within the commonly invoked wide-band approximation. Our research provides new guidelines for the design of mechanically stable molecular devices operating in the regime of resonant charge transport and demonstrates these guidelines while considering realistic features of single-molecule junctions.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b01127</identifier><identifier>PMID: 29923410</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science ; Physics ; Science & Technology - Other Topics</subject><ispartof>Nano letters, 2018-08, Vol.18 (8), p.4727-4733</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73</citedby><cites>FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73</cites><orcidid>0000-0003-3185-5936 ; 0000000331855936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29923410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1539413$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gelbwaser-Klimovsky, David</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><creatorcontrib>Thoss, Michael</creatorcontrib><creatorcontrib>Peskin, Uri</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><title>High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport. In this work, we focus on single-molecule junctions, demonstrating that their mechanical stability during resonant transport can be increased by increasing the bias voltage. This counter-intuitive effect is attributed to the energy dependence of the molecule–lead coupling densities, which promote the rate of transport-induced cooling of molecular vibrations at higher voltages. The required energy dependence is characteristic of realistic electrodes (such as graphene), which cannot be modeled within the commonly invoked wide-band approximation. Our research provides new guidelines for the design of mechanically stable molecular devices operating in the regime of resonant charge transport and demonstrates these guidelines while considering realistic features of single-molecule junctions.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Science & Technology - Other Topics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EYv4DhCJWbFKeE6eJlxUCyiQWDFvLY2vk2iV2FvD1uGrLkpUtvXPvsw9CZxhGGCp8xWUcee6D0ymNOgEYV-0OOsRNDeWY0mr3796RA3QU4ycA0LqBfXRQ5XlNMByix6mdzcuP4BKf6XISo41Jq-JZyzn3VnJXvCYurLM_PNngi2CKV-tnTpfPebMcnC4eBi9Xs3iC9gx3UZ9uzmP0fnvzdj0tn17u7q8nTyWv2yaV1HRdVysiGtPUghpFKkLGRDVEKEOhAUUFGAFjVYEQVGICSksDpANqiG7rY3Sx7g0xWRalTfm1MnivZWL5z5TgOkOXa2jZh69Bx8QWNkrtHPc6DJFV0LSEQDte9ZE1KvsQY68NW_Z2wftvhoGtXLPsmm1ds43rHDvfbBjEQqu_0FZuBmANrOKfYeh9tvJ_5y_VxY4v</recordid><startdate>20180808</startdate><enddate>20180808</enddate><creator>Gelbwaser-Klimovsky, David</creator><creator>Aspuru-Guzik, Alán</creator><creator>Thoss, Michael</creator><creator>Peskin, Uri</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3185-5936</orcidid><orcidid>https://orcid.org/0000000331855936</orcidid></search><sort><creationdate>20180808</creationdate><title>High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions</title><author>Gelbwaser-Klimovsky, David ; Aspuru-Guzik, Alán ; Thoss, Michael ; Peskin, Uri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelbwaser-Klimovsky, David</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><creatorcontrib>Thoss, Michael</creatorcontrib><creatorcontrib>Peskin, Uri</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelbwaser-Klimovsky, David</au><au>Aspuru-Guzik, Alán</au><au>Thoss, Michael</au><au>Peskin, Uri</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-08-08</date><risdate>2018</risdate><volume>18</volume><issue>8</issue><spage>4727</spage><epage>4733</epage><pages>4727-4733</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport. In this work, we focus on single-molecule junctions, demonstrating that their mechanical stability during resonant transport can be increased by increasing the bias voltage. This counter-intuitive effect is attributed to the energy dependence of the molecule–lead coupling densities, which promote the rate of transport-induced cooling of molecular vibrations at higher voltages. The required energy dependence is characteristic of realistic electrodes (such as graphene), which cannot be modeled within the commonly invoked wide-band approximation. Our research provides new guidelines for the design of mechanically stable molecular devices operating in the regime of resonant charge transport and demonstrates these guidelines while considering realistic features of single-molecule junctions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29923410</pmid><doi>10.1021/acs.nanolett.8b01127</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3185-5936</orcidid><orcidid>https://orcid.org/0000000331855936</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2018-08, Vol.18 (8), p.4727-4733 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1539413 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemistry Materials Science Physics Science & Technology - Other Topics |
title | High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Voltage-Assisted%20Mechanical%20Stabilization%20of%20Single-Molecule%20Junctions&rft.jtitle=Nano%20letters&rft.au=Gelbwaser-Klimovsky,%20David&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2018-08-08&rft.volume=18&rft.issue=8&rft.spage=4727&rft.epage=4733&rft.pages=4727-4733&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b01127&rft_dat=%3Cproquest_osti_%3E2057440767%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2057440767&rft_id=info:pmid/29923410&rfr_iscdi=true |