Loading…

High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions

Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realiza...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2018-08, Vol.18 (8), p.4727-4733
Main Authors: Gelbwaser-Klimovsky, David, Aspuru-Guzik, Alán, Thoss, Michael, Peskin, Uri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73
cites cdi_FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73
container_end_page 4733
container_issue 8
container_start_page 4727
container_title Nano letters
container_volume 18
creator Gelbwaser-Klimovsky, David
Aspuru-Guzik, Alán
Thoss, Michael
Peskin, Uri
description Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport. In this work, we focus on single-molecule junctions, demonstrating that their mechanical stability during resonant transport can be increased by increasing the bias voltage. This counter-intuitive effect is attributed to the energy dependence of the molecule–lead coupling densities, which promote the rate of transport-induced cooling of molecular vibrations at higher voltages. The required energy dependence is characteristic of realistic electrodes (such as graphene), which cannot be modeled within the commonly invoked wide-band approximation. Our research provides new guidelines for the design of mechanically stable molecular devices operating in the regime of resonant charge transport and demonstrates these guidelines while considering realistic features of single-molecule junctions.
doi_str_mv 10.1021/acs.nanolett.8b01127
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057440767</sourcerecordid><originalsourceid>FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EYv4DhCJWbFKeE6eJlxUCyiQWDFvLY2vk2iV2FvD1uGrLkpUtvXPvsw9CZxhGGCp8xWUcee6D0ymNOgEYV-0OOsRNDeWY0mr3796RA3QU4ycA0LqBfXRQ5XlNMByix6mdzcuP4BKf6XISo41Jq-JZyzn3VnJXvCYurLM_PNngi2CKV-tnTpfPebMcnC4eBi9Xs3iC9gx3UZ9uzmP0fnvzdj0tn17u7q8nTyWv2yaV1HRdVysiGtPUghpFKkLGRDVEKEOhAUUFGAFjVYEQVGICSksDpANqiG7rY3Sx7g0xWRalTfm1MnivZWL5z5TgOkOXa2jZh69Bx8QWNkrtHPc6DJFV0LSEQDte9ZE1KvsQY68NW_Z2wftvhoGtXLPsmm1ds43rHDvfbBjEQqu_0FZuBmANrOKfYeh9tvJ_5y_VxY4v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057440767</pqid></control><display><type>article</type><title>High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gelbwaser-Klimovsky, David ; Aspuru-Guzik, Alán ; Thoss, Michael ; Peskin, Uri</creator><creatorcontrib>Gelbwaser-Klimovsky, David ; Aspuru-Guzik, Alán ; Thoss, Michael ; Peskin, Uri ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><description>Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport. In this work, we focus on single-molecule junctions, demonstrating that their mechanical stability during resonant transport can be increased by increasing the bias voltage. This counter-intuitive effect is attributed to the energy dependence of the molecule–lead coupling densities, which promote the rate of transport-induced cooling of molecular vibrations at higher voltages. The required energy dependence is characteristic of realistic electrodes (such as graphene), which cannot be modeled within the commonly invoked wide-band approximation. Our research provides new guidelines for the design of mechanically stable molecular devices operating in the regime of resonant charge transport and demonstrates these guidelines while considering realistic features of single-molecule junctions.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b01127</identifier><identifier>PMID: 29923410</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science ; Physics ; Science &amp; Technology - Other Topics</subject><ispartof>Nano letters, 2018-08, Vol.18 (8), p.4727-4733</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73</citedby><cites>FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73</cites><orcidid>0000-0003-3185-5936 ; 0000000331855936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29923410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1539413$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gelbwaser-Klimovsky, David</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><creatorcontrib>Thoss, Michael</creatorcontrib><creatorcontrib>Peskin, Uri</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><title>High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport. In this work, we focus on single-molecule junctions, demonstrating that their mechanical stability during resonant transport can be increased by increasing the bias voltage. This counter-intuitive effect is attributed to the energy dependence of the molecule–lead coupling densities, which promote the rate of transport-induced cooling of molecular vibrations at higher voltages. The required energy dependence is characteristic of realistic electrodes (such as graphene), which cannot be modeled within the commonly invoked wide-band approximation. Our research provides new guidelines for the design of mechanically stable molecular devices operating in the regime of resonant charge transport and demonstrates these guidelines while considering realistic features of single-molecule junctions.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Science &amp; Technology - Other Topics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EYv4DhCJWbFKeE6eJlxUCyiQWDFvLY2vk2iV2FvD1uGrLkpUtvXPvsw9CZxhGGCp8xWUcee6D0ymNOgEYV-0OOsRNDeWY0mr3796RA3QU4ycA0LqBfXRQ5XlNMByix6mdzcuP4BKf6XISo41Jq-JZyzn3VnJXvCYurLM_PNngi2CKV-tnTpfPebMcnC4eBi9Xs3iC9gx3UZ9uzmP0fnvzdj0tn17u7q8nTyWv2yaV1HRdVysiGtPUghpFKkLGRDVEKEOhAUUFGAFjVYEQVGICSksDpANqiG7rY3Sx7g0xWRalTfm1MnivZWL5z5TgOkOXa2jZh69Bx8QWNkrtHPc6DJFV0LSEQDte9ZE1KvsQY68NW_Z2wftvhoGtXLPsmm1ds43rHDvfbBjEQqu_0FZuBmANrOKfYeh9tvJ_5y_VxY4v</recordid><startdate>20180808</startdate><enddate>20180808</enddate><creator>Gelbwaser-Klimovsky, David</creator><creator>Aspuru-Guzik, Alán</creator><creator>Thoss, Michael</creator><creator>Peskin, Uri</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3185-5936</orcidid><orcidid>https://orcid.org/0000000331855936</orcidid></search><sort><creationdate>20180808</creationdate><title>High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions</title><author>Gelbwaser-Klimovsky, David ; Aspuru-Guzik, Alán ; Thoss, Michael ; Peskin, Uri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelbwaser-Klimovsky, David</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><creatorcontrib>Thoss, Michael</creatorcontrib><creatorcontrib>Peskin, Uri</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelbwaser-Klimovsky, David</au><au>Aspuru-Guzik, Alán</au><au>Thoss, Michael</au><au>Peskin, Uri</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-08-08</date><risdate>2018</risdate><volume>18</volume><issue>8</issue><spage>4727</spage><epage>4733</epage><pages>4727-4733</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport. In this work, we focus on single-molecule junctions, demonstrating that their mechanical stability during resonant transport can be increased by increasing the bias voltage. This counter-intuitive effect is attributed to the energy dependence of the molecule–lead coupling densities, which promote the rate of transport-induced cooling of molecular vibrations at higher voltages. The required energy dependence is characteristic of realistic electrodes (such as graphene), which cannot be modeled within the commonly invoked wide-band approximation. Our research provides new guidelines for the design of mechanically stable molecular devices operating in the regime of resonant charge transport and demonstrates these guidelines while considering realistic features of single-molecule junctions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29923410</pmid><doi>10.1021/acs.nanolett.8b01127</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3185-5936</orcidid><orcidid>https://orcid.org/0000000331855936</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2018-08, Vol.18 (8), p.4727-4733
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1539413
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Materials Science
Physics
Science & Technology - Other Topics
title High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Voltage-Assisted%20Mechanical%20Stabilization%20of%20Single-Molecule%20Junctions&rft.jtitle=Nano%20letters&rft.au=Gelbwaser-Klimovsky,%20David&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2018-08-08&rft.volume=18&rft.issue=8&rft.spage=4727&rft.epage=4733&rft.pages=4727-4733&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b01127&rft_dat=%3Cproquest_osti_%3E2057440767%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a375t-9f8883d4b5f53b9fd424464d54bdf9050d9b0fb06d20bb9c140decf04809f4e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2057440767&rft_id=info:pmid/29923410&rfr_iscdi=true