Loading…
Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying
The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that th...
Saved in:
Published in: | ACS energy letters 2018-06, Vol.3 (6), p.1261-1268 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03 |
---|---|
cites | cdi_FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03 |
container_end_page | 1268 |
container_issue | 6 |
container_start_page | 1261 |
container_title | ACS energy letters |
container_volume | 3 |
creator | Stoddard, Ryan J Rajagopal, Adharsh Palmer, Ray L Braly, Ian L Jen, Alex K.-Y Hillhouse, Hugh W |
description | The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)Pb(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)Pb(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is >91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)Pb(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)Pb(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells. |
doi_str_mv | 10.1021/acsenergylett.8b00576 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c842903953</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgqf0JQvC-NR_Nfhxrra1QsGA9h2w22U3dJiVJC_vvjdSDnmQOM8yb95j3ALjHaIoRwY9CBmWVb4dexTgta4RYkV-BEaElykpcsetf8y2YhLBHCOG8ZKlGQC5tJ6w0toXPSisZ4c71yqeVgsI2cNuJoOB7FLXpTRyg03Bt2i57SmArjnCrvDuHTxNVgGcj4OokrGmMNacDnPe9G5LyHbjRog9q8tPH4ONluVuss83b6nUx32SCEhKzvMFC15XUItczRkhelEzPZIUaLXUjKEYUNZKURdEUWFFBalJSxRRGktRYIToGDxddF6LhQaanZCedtckWx4xWbFakI3Y5kt6F4JXmR28Owg8cI_6dKP-TKP9JNPHwhZdgvncnb5OVfzhfY3GADw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Stoddard, Ryan J ; Rajagopal, Adharsh ; Palmer, Ray L ; Braly, Ian L ; Jen, Alex K.-Y ; Hillhouse, Hugh W</creator><creatorcontrib>Stoddard, Ryan J ; Rajagopal, Adharsh ; Palmer, Ray L ; Braly, Ian L ; Jen, Alex K.-Y ; Hillhouse, Hugh W ; Univ. of Washington, Seattle, WA (United States)</creatorcontrib><description>The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)Pb(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)Pb(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is >91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)Pb(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)Pb(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.8b00576</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Electrochemistry ; Energy & Fuels ; Materials Science ; Science & Technology - Other Topics</subject><ispartof>ACS energy letters, 2018-06, Vol.3 (6), p.1261-1268</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03</citedby><cites>FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03</cites><orcidid>0000-0002-7010-0424 ; 0000-0001-9806-080X ; 0000-0003-2069-7899 ; 0000-0003-1071-6443 ; 0000-0002-9219-7749 ; 0000000310716443 ; 000000019806080X ; 0000000320697899 ; 0000000292197749 ; 0000000270100424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1539547$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoddard, Ryan J</creatorcontrib><creatorcontrib>Rajagopal, Adharsh</creatorcontrib><creatorcontrib>Palmer, Ray L</creatorcontrib><creatorcontrib>Braly, Ian L</creatorcontrib><creatorcontrib>Jen, Alex K.-Y</creatorcontrib><creatorcontrib>Hillhouse, Hugh W</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><title>Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)Pb(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)Pb(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is >91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)Pb(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)Pb(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells.</description><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Energy & Fuels</subject><subject>Materials Science</subject><subject>Science & Technology - Other Topics</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgqf0JQvC-NR_Nfhxrra1QsGA9h2w22U3dJiVJC_vvjdSDnmQOM8yb95j3ALjHaIoRwY9CBmWVb4dexTgta4RYkV-BEaElykpcsetf8y2YhLBHCOG8ZKlGQC5tJ6w0toXPSisZ4c71yqeVgsI2cNuJoOB7FLXpTRyg03Bt2i57SmArjnCrvDuHTxNVgGcj4OokrGmMNacDnPe9G5LyHbjRog9q8tPH4ONluVuss83b6nUx32SCEhKzvMFC15XUItczRkhelEzPZIUaLXUjKEYUNZKURdEUWFFBalJSxRRGktRYIToGDxddF6LhQaanZCedtckWx4xWbFakI3Y5kt6F4JXmR28Owg8cI_6dKP-TKP9JNPHwhZdgvncnb5OVfzhfY3GADw</recordid><startdate>20180608</startdate><enddate>20180608</enddate><creator>Stoddard, Ryan J</creator><creator>Rajagopal, Adharsh</creator><creator>Palmer, Ray L</creator><creator>Braly, Ian L</creator><creator>Jen, Alex K.-Y</creator><creator>Hillhouse, Hugh W</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7010-0424</orcidid><orcidid>https://orcid.org/0000-0001-9806-080X</orcidid><orcidid>https://orcid.org/0000-0003-2069-7899</orcidid><orcidid>https://orcid.org/0000-0003-1071-6443</orcidid><orcidid>https://orcid.org/0000-0002-9219-7749</orcidid><orcidid>https://orcid.org/0000000310716443</orcidid><orcidid>https://orcid.org/000000019806080X</orcidid><orcidid>https://orcid.org/0000000320697899</orcidid><orcidid>https://orcid.org/0000000292197749</orcidid><orcidid>https://orcid.org/0000000270100424</orcidid></search><sort><creationdate>20180608</creationdate><title>Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying</title><author>Stoddard, Ryan J ; Rajagopal, Adharsh ; Palmer, Ray L ; Braly, Ian L ; Jen, Alex K.-Y ; Hillhouse, Hugh W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Energy & Fuels</topic><topic>Materials Science</topic><topic>Science & Technology - Other Topics</topic><toplevel>online_resources</toplevel><creatorcontrib>Stoddard, Ryan J</creatorcontrib><creatorcontrib>Rajagopal, Adharsh</creatorcontrib><creatorcontrib>Palmer, Ray L</creatorcontrib><creatorcontrib>Braly, Ian L</creatorcontrib><creatorcontrib>Jen, Alex K.-Y</creatorcontrib><creatorcontrib>Hillhouse, Hugh W</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoddard, Ryan J</au><au>Rajagopal, Adharsh</au><au>Palmer, Ray L</au><au>Braly, Ian L</au><au>Jen, Alex K.-Y</au><au>Hillhouse, Hugh W</au><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2018-06-08</date><risdate>2018</risdate><volume>3</volume><issue>6</issue><spage>1261</spage><epage>1268</epage><pages>1261-1268</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)Pb(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)Pb(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is >91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)Pb(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)Pb(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.8b00576</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7010-0424</orcidid><orcidid>https://orcid.org/0000-0001-9806-080X</orcidid><orcidid>https://orcid.org/0000-0003-2069-7899</orcidid><orcidid>https://orcid.org/0000-0003-1071-6443</orcidid><orcidid>https://orcid.org/0000-0002-9219-7749</orcidid><orcidid>https://orcid.org/0000000310716443</orcidid><orcidid>https://orcid.org/000000019806080X</orcidid><orcidid>https://orcid.org/0000000320697899</orcidid><orcidid>https://orcid.org/0000000292197749</orcidid><orcidid>https://orcid.org/0000000270100424</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2018-06, Vol.3 (6), p.1261-1268 |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_osti_scitechconnect_1539547 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemistry Electrochemistry Energy & Fuels Materials Science Science & Technology - Other Topics |
title | Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Defect%20Tolerance%20and%20Phase%20Stability%20of%20High-Bandgap%20Perovskites%20via%20Guanidinium%20Alloying&rft.jtitle=ACS%20energy%20letters&rft.au=Stoddard,%20Ryan%20J&rft.aucorp=Univ.%20of%20Washington,%20Seattle,%20WA%20(United%20States)&rft.date=2018-06-08&rft.volume=3&rft.issue=6&rft.spage=1261&rft.epage=1268&rft.pages=1261-1268&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.8b00576&rft_dat=%3Cacs_osti_%3Ec842903953%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |