Loading…

Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying

The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that th...

Full description

Saved in:
Bibliographic Details
Published in:ACS energy letters 2018-06, Vol.3 (6), p.1261-1268
Main Authors: Stoddard, Ryan J, Rajagopal, Adharsh, Palmer, Ray L, Braly, Ian L, Jen, Alex K.-Y, Hillhouse, Hugh W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03
cites cdi_FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03
container_end_page 1268
container_issue 6
container_start_page 1261
container_title ACS energy letters
container_volume 3
creator Stoddard, Ryan J
Rajagopal, Adharsh
Palmer, Ray L
Braly, Ian L
Jen, Alex K.-Y
Hillhouse, Hugh W
description The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)­Pb­(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)­Pb­(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is >91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)­Pb­(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)­Pb­(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells.
doi_str_mv 10.1021/acsenergylett.8b00576
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c842903953</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgqf0JQvC-NR_Nfhxrra1QsGA9h2w22U3dJiVJC_vvjdSDnmQOM8yb95j3ALjHaIoRwY9CBmWVb4dexTgta4RYkV-BEaElykpcsetf8y2YhLBHCOG8ZKlGQC5tJ6w0toXPSisZ4c71yqeVgsI2cNuJoOB7FLXpTRyg03Bt2i57SmArjnCrvDuHTxNVgGcj4OokrGmMNacDnPe9G5LyHbjRog9q8tPH4ONluVuss83b6nUx32SCEhKzvMFC15XUItczRkhelEzPZIUaLXUjKEYUNZKURdEUWFFBalJSxRRGktRYIToGDxddF6LhQaanZCedtckWx4xWbFakI3Y5kt6F4JXmR28Owg8cI_6dKP-TKP9JNPHwhZdgvncnb5OVfzhfY3GADw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Stoddard, Ryan J ; Rajagopal, Adharsh ; Palmer, Ray L ; Braly, Ian L ; Jen, Alex K.-Y ; Hillhouse, Hugh W</creator><creatorcontrib>Stoddard, Ryan J ; Rajagopal, Adharsh ; Palmer, Ray L ; Braly, Ian L ; Jen, Alex K.-Y ; Hillhouse, Hugh W ; Univ. of Washington, Seattle, WA (United States)</creatorcontrib><description>The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg &gt; 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)­Pb­(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)­Pb­(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is &gt;91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)­Pb­(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)­Pb­(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.8b00576</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Electrochemistry ; Energy &amp; Fuels ; Materials Science ; Science &amp; Technology - Other Topics</subject><ispartof>ACS energy letters, 2018-06, Vol.3 (6), p.1261-1268</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03</citedby><cites>FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03</cites><orcidid>0000-0002-7010-0424 ; 0000-0001-9806-080X ; 0000-0003-2069-7899 ; 0000-0003-1071-6443 ; 0000-0002-9219-7749 ; 0000000310716443 ; 000000019806080X ; 0000000320697899 ; 0000000292197749 ; 0000000270100424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1539547$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoddard, Ryan J</creatorcontrib><creatorcontrib>Rajagopal, Adharsh</creatorcontrib><creatorcontrib>Palmer, Ray L</creatorcontrib><creatorcontrib>Braly, Ian L</creatorcontrib><creatorcontrib>Jen, Alex K.-Y</creatorcontrib><creatorcontrib>Hillhouse, Hugh W</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><title>Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg &gt; 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)­Pb­(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)­Pb­(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is &gt;91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)­Pb­(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)­Pb­(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells.</description><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Energy &amp; Fuels</subject><subject>Materials Science</subject><subject>Science &amp; Technology - Other Topics</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgqf0JQvC-NR_Nfhxrra1QsGA9h2w22U3dJiVJC_vvjdSDnmQOM8yb95j3ALjHaIoRwY9CBmWVb4dexTgta4RYkV-BEaElykpcsetf8y2YhLBHCOG8ZKlGQC5tJ6w0toXPSisZ4c71yqeVgsI2cNuJoOB7FLXpTRyg03Bt2i57SmArjnCrvDuHTxNVgGcj4OokrGmMNacDnPe9G5LyHbjRog9q8tPH4ONluVuss83b6nUx32SCEhKzvMFC15XUItczRkhelEzPZIUaLXUjKEYUNZKURdEUWFFBalJSxRRGktRYIToGDxddF6LhQaanZCedtckWx4xWbFakI3Y5kt6F4JXmR28Owg8cI_6dKP-TKP9JNPHwhZdgvncnb5OVfzhfY3GADw</recordid><startdate>20180608</startdate><enddate>20180608</enddate><creator>Stoddard, Ryan J</creator><creator>Rajagopal, Adharsh</creator><creator>Palmer, Ray L</creator><creator>Braly, Ian L</creator><creator>Jen, Alex K.-Y</creator><creator>Hillhouse, Hugh W</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7010-0424</orcidid><orcidid>https://orcid.org/0000-0001-9806-080X</orcidid><orcidid>https://orcid.org/0000-0003-2069-7899</orcidid><orcidid>https://orcid.org/0000-0003-1071-6443</orcidid><orcidid>https://orcid.org/0000-0002-9219-7749</orcidid><orcidid>https://orcid.org/0000000310716443</orcidid><orcidid>https://orcid.org/000000019806080X</orcidid><orcidid>https://orcid.org/0000000320697899</orcidid><orcidid>https://orcid.org/0000000292197749</orcidid><orcidid>https://orcid.org/0000000270100424</orcidid></search><sort><creationdate>20180608</creationdate><title>Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying</title><author>Stoddard, Ryan J ; Rajagopal, Adharsh ; Palmer, Ray L ; Braly, Ian L ; Jen, Alex K.-Y ; Hillhouse, Hugh W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Energy &amp; Fuels</topic><topic>Materials Science</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>online_resources</toplevel><creatorcontrib>Stoddard, Ryan J</creatorcontrib><creatorcontrib>Rajagopal, Adharsh</creatorcontrib><creatorcontrib>Palmer, Ray L</creatorcontrib><creatorcontrib>Braly, Ian L</creatorcontrib><creatorcontrib>Jen, Alex K.-Y</creatorcontrib><creatorcontrib>Hillhouse, Hugh W</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoddard, Ryan J</au><au>Rajagopal, Adharsh</au><au>Palmer, Ray L</au><au>Braly, Ian L</au><au>Jen, Alex K.-Y</au><au>Hillhouse, Hugh W</au><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2018-06-08</date><risdate>2018</risdate><volume>3</volume><issue>6</issue><spage>1261</spage><epage>1268</epage><pages>1261-1268</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg &gt; 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)­Pb­(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)­Pb­(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is &gt;91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)­Pb­(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)­Pb­(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.8b00576</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7010-0424</orcidid><orcidid>https://orcid.org/0000-0001-9806-080X</orcidid><orcidid>https://orcid.org/0000-0003-2069-7899</orcidid><orcidid>https://orcid.org/0000-0003-1071-6443</orcidid><orcidid>https://orcid.org/0000-0002-9219-7749</orcidid><orcidid>https://orcid.org/0000000310716443</orcidid><orcidid>https://orcid.org/000000019806080X</orcidid><orcidid>https://orcid.org/0000000320697899</orcidid><orcidid>https://orcid.org/0000000292197749</orcidid><orcidid>https://orcid.org/0000000270100424</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2018-06, Vol.3 (6), p.1261-1268
issn 2380-8195
2380-8195
language eng
recordid cdi_osti_scitechconnect_1539547
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Electrochemistry
Energy & Fuels
Materials Science
Science & Technology - Other Topics
title Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Defect%20Tolerance%20and%20Phase%20Stability%20of%20High-Bandgap%20Perovskites%20via%20Guanidinium%20Alloying&rft.jtitle=ACS%20energy%20letters&rft.au=Stoddard,%20Ryan%20J&rft.aucorp=Univ.%20of%20Washington,%20Seattle,%20WA%20(United%20States)&rft.date=2018-06-08&rft.volume=3&rft.issue=6&rft.spage=1261&rft.epage=1268&rft.pages=1261-1268&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.8b00576&rft_dat=%3Cacs_osti_%3Ec842903953%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true