Loading…
Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies
Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge,...
Saved in:
Published in: | Nature chemistry 2018-03, Vol.10 (3), p.268-274 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3 |
container_end_page | 274 |
container_issue | 3 |
container_start_page | 268 |
container_title | Nature chemistry |
container_volume | 10 |
creator | Kumar, Gaurav Tibbitts, Luke Newell, Jaclyn Panthi, Basu Mukhopadhyay, Ahana Rioux, Robert M. Pursell, Christopher J. Janik, Michael Chandler, Bert D. |
description | Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal–support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles.
Understanding how a supporting material can change the surface chemistry of the nanoparticle catalysts that it hosts is critical to tuning catalytic properties. Experimental Hammett studies and density functional theory calculations show that differences in reactivity can be attributed to differences in the electron density at metal active sites, which arises from differences in electron donation from the support. |
doi_str_mv | 10.1038/nchem.2911 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007112311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3</originalsourceid><addsrcrecordid>eNpt0U1rFTEYBeBBFFurG3-ABN2IMjWfk5ll6YctFLqp6yGTeac3ZSYZ8yaF-uub29tWEFcJ5OGEw6mqj4weMiraH95uYDnkHWOvqn2mlaqlkN3rl7uge9U7xFtKGyVY87ba451smGLdfvXn9M7M2STnb8jopgkieAtInCdpA8TY5O6gRpeAwAw2xeCdRRImgnldQ0wwkqNMvPFhNTE5OwOxJpn5HhOSjNvcc7MskBIxfiQnZ9cEUx4d4PvqzWRmhA9P50H16-z0-vi8vrz6eXF8dFlbKWWqQTFtxk62yoxUtYPVdJq0pMOgAEq3rlFcU9kNbWM1NwPj0lAYaMOHRulmEAfV511uwOR6tKWL3djgfanTMyU6rduCvu7QGsPvDJj6xaGFeTYeQsaeU6oZ44KxQr_8Q29Djr5UKIoL0XLebNW3nbIxIEaY-jW6xcT7ntF-O1v_OFu_na3gT0-ReVhgfKHPOxXwfQewPPkbiH___E_cA7RIokU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023382261</pqid></control><display><type>article</type><title>Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies</title><source>Nature</source><creator>Kumar, Gaurav ; Tibbitts, Luke ; Newell, Jaclyn ; Panthi, Basu ; Mukhopadhyay, Ahana ; Rioux, Robert M. ; Pursell, Christopher J. ; Janik, Michael ; Chandler, Bert D.</creator><creatorcontrib>Kumar, Gaurav ; Tibbitts, Luke ; Newell, Jaclyn ; Panthi, Basu ; Mukhopadhyay, Ahana ; Rioux, Robert M. ; Pursell, Christopher J. ; Janik, Michael ; Chandler, Bert D. ; Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><description>Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal–support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles.
Understanding how a supporting material can change the surface chemistry of the nanoparticle catalysts that it hosts is critical to tuning catalytic properties. Experimental Hammett studies and density functional theory calculations show that differences in reactivity can be attributed to differences in the electron density at metal active sites, which arises from differences in electron donation from the support.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2911</identifier><identifier>PMID: 29461519</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/542 ; 639/638/77/885 ; 639/638/77/887 ; 639/638/898 ; Analytical Chemistry ; Benzyl alcohol ; Biochemistry ; Catalysis ; Catalysts ; Catalytic activity ; Chemistry ; Chemistry/Food Science ; Density functional theory ; Gold ; Inorganic Chemistry ; Metal oxides ; Metals ; Nanoparticles ; Organic Chemistry ; Oxidation ; Oxides ; Physical Chemistry</subject><ispartof>Nature chemistry, 2018-03, Vol.10 (3), p.268-274</ispartof><rights>Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3</citedby><cites>FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3</cites><orcidid>0000-0002-6094-1705 ; 0000-0002-8621-0361 ; 0000000286210361 ; 0000000260941705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29461519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1539778$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Gaurav</creatorcontrib><creatorcontrib>Tibbitts, Luke</creatorcontrib><creatorcontrib>Newell, Jaclyn</creatorcontrib><creatorcontrib>Panthi, Basu</creatorcontrib><creatorcontrib>Mukhopadhyay, Ahana</creatorcontrib><creatorcontrib>Rioux, Robert M.</creatorcontrib><creatorcontrib>Pursell, Christopher J.</creatorcontrib><creatorcontrib>Janik, Michael</creatorcontrib><creatorcontrib>Chandler, Bert D.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><title>Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal–support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles.
Understanding how a supporting material can change the surface chemistry of the nanoparticle catalysts that it hosts is critical to tuning catalytic properties. Experimental Hammett studies and density functional theory calculations show that differences in reactivity can be attributed to differences in the electron density at metal active sites, which arises from differences in electron donation from the support.</description><subject>639/638/542</subject><subject>639/638/77/885</subject><subject>639/638/77/887</subject><subject>639/638/898</subject><subject>Analytical Chemistry</subject><subject>Benzyl alcohol</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Density functional theory</subject><subject>Gold</subject><subject>Inorganic Chemistry</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Physical Chemistry</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpt0U1rFTEYBeBBFFurG3-ABN2IMjWfk5ll6YctFLqp6yGTeac3ZSYZ8yaF-uub29tWEFcJ5OGEw6mqj4weMiraH95uYDnkHWOvqn2mlaqlkN3rl7uge9U7xFtKGyVY87ba451smGLdfvXn9M7M2STnb8jopgkieAtInCdpA8TY5O6gRpeAwAw2xeCdRRImgnldQ0wwkqNMvPFhNTE5OwOxJpn5HhOSjNvcc7MskBIxfiQnZ9cEUx4d4PvqzWRmhA9P50H16-z0-vi8vrz6eXF8dFlbKWWqQTFtxk62yoxUtYPVdJq0pMOgAEq3rlFcU9kNbWM1NwPj0lAYaMOHRulmEAfV511uwOR6tKWL3djgfanTMyU6rduCvu7QGsPvDJj6xaGFeTYeQsaeU6oZ44KxQr_8Q29Djr5UKIoL0XLebNW3nbIxIEaY-jW6xcT7ntF-O1v_OFu_na3gT0-ReVhgfKHPOxXwfQewPPkbiH___E_cA7RIokU</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Kumar, Gaurav</creator><creator>Tibbitts, Luke</creator><creator>Newell, Jaclyn</creator><creator>Panthi, Basu</creator><creator>Mukhopadhyay, Ahana</creator><creator>Rioux, Robert M.</creator><creator>Pursell, Christopher J.</creator><creator>Janik, Michael</creator><creator>Chandler, Bert D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6094-1705</orcidid><orcidid>https://orcid.org/0000-0002-8621-0361</orcidid><orcidid>https://orcid.org/0000000286210361</orcidid><orcidid>https://orcid.org/0000000260941705</orcidid></search><sort><creationdate>20180301</creationdate><title>Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies</title><author>Kumar, Gaurav ; Tibbitts, Luke ; Newell, Jaclyn ; Panthi, Basu ; Mukhopadhyay, Ahana ; Rioux, Robert M. ; Pursell, Christopher J. ; Janik, Michael ; Chandler, Bert D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/638/542</topic><topic>639/638/77/885</topic><topic>639/638/77/887</topic><topic>639/638/898</topic><topic>Analytical Chemistry</topic><topic>Benzyl alcohol</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Density functional theory</topic><topic>Gold</topic><topic>Inorganic Chemistry</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Gaurav</creatorcontrib><creatorcontrib>Tibbitts, Luke</creatorcontrib><creatorcontrib>Newell, Jaclyn</creatorcontrib><creatorcontrib>Panthi, Basu</creatorcontrib><creatorcontrib>Mukhopadhyay, Ahana</creatorcontrib><creatorcontrib>Rioux, Robert M.</creatorcontrib><creatorcontrib>Pursell, Christopher J.</creatorcontrib><creatorcontrib>Janik, Michael</creatorcontrib><creatorcontrib>Chandler, Bert D.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Gaurav</au><au>Tibbitts, Luke</au><au>Newell, Jaclyn</au><au>Panthi, Basu</au><au>Mukhopadhyay, Ahana</au><au>Rioux, Robert M.</au><au>Pursell, Christopher J.</au><au>Janik, Michael</au><au>Chandler, Bert D.</au><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>10</volume><issue>3</issue><spage>268</spage><epage>274</epage><pages>268-274</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal–support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles.
Understanding how a supporting material can change the surface chemistry of the nanoparticle catalysts that it hosts is critical to tuning catalytic properties. Experimental Hammett studies and density functional theory calculations show that differences in reactivity can be attributed to differences in the electron density at metal active sites, which arises from differences in electron donation from the support.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29461519</pmid><doi>10.1038/nchem.2911</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6094-1705</orcidid><orcidid>https://orcid.org/0000-0002-8621-0361</orcidid><orcidid>https://orcid.org/0000000286210361</orcidid><orcidid>https://orcid.org/0000000260941705</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2018-03, Vol.10 (3), p.268-274 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_osti_scitechconnect_1539778 |
source | Nature |
subjects | 639/638/542 639/638/77/885 639/638/77/887 639/638/898 Analytical Chemistry Benzyl alcohol Biochemistry Catalysis Catalysts Catalytic activity Chemistry Chemistry/Food Science Density functional theory Gold Inorganic Chemistry Metal oxides Metals Nanoparticles Organic Chemistry Oxidation Oxides Physical Chemistry |
title | Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20differences%20in%20the%20active-site%20electronics%20of%20supported%20Au%20nanoparticle%20catalysts%20using%20Hammett%20and%20DFT%20studies&rft.jtitle=Nature%20chemistry&rft.au=Kumar,%20Gaurav&rft.aucorp=Pennsylvania%20State%20Univ.,%20University%20Park,%20PA%20(United%20States)&rft.date=2018-03-01&rft.volume=10&rft.issue=3&rft.spage=268&rft.epage=274&rft.pages=268-274&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2911&rft_dat=%3Cproquest_osti_%3E2007112311%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2023382261&rft_id=info:pmid/29461519&rfr_iscdi=true |