Loading…

Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies

Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge,...

Full description

Saved in:
Bibliographic Details
Published in:Nature chemistry 2018-03, Vol.10 (3), p.268-274
Main Authors: Kumar, Gaurav, Tibbitts, Luke, Newell, Jaclyn, Panthi, Basu, Mukhopadhyay, Ahana, Rioux, Robert M., Pursell, Christopher J., Janik, Michael, Chandler, Bert D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3
cites cdi_FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3
container_end_page 274
container_issue 3
container_start_page 268
container_title Nature chemistry
container_volume 10
creator Kumar, Gaurav
Tibbitts, Luke
Newell, Jaclyn
Panthi, Basu
Mukhopadhyay, Ahana
Rioux, Robert M.
Pursell, Christopher J.
Janik, Michael
Chandler, Bert D.
description Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal–support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles. Understanding how a supporting material can change the surface chemistry of the nanoparticle catalysts that it hosts is critical to tuning catalytic properties. Experimental Hammett studies and density functional theory calculations show that differences in reactivity can be attributed to differences in the electron density at metal active sites, which arises from differences in electron donation from the support.
doi_str_mv 10.1038/nchem.2911
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007112311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3</originalsourceid><addsrcrecordid>eNpt0U1rFTEYBeBBFFurG3-ABN2IMjWfk5ll6YctFLqp6yGTeac3ZSYZ8yaF-uub29tWEFcJ5OGEw6mqj4weMiraH95uYDnkHWOvqn2mlaqlkN3rl7uge9U7xFtKGyVY87ba451smGLdfvXn9M7M2STnb8jopgkieAtInCdpA8TY5O6gRpeAwAw2xeCdRRImgnldQ0wwkqNMvPFhNTE5OwOxJpn5HhOSjNvcc7MskBIxfiQnZ9cEUx4d4PvqzWRmhA9P50H16-z0-vi8vrz6eXF8dFlbKWWqQTFtxk62yoxUtYPVdJq0pMOgAEq3rlFcU9kNbWM1NwPj0lAYaMOHRulmEAfV511uwOR6tKWL3djgfanTMyU6rduCvu7QGsPvDJj6xaGFeTYeQsaeU6oZ44KxQr_8Q29Djr5UKIoL0XLebNW3nbIxIEaY-jW6xcT7ntF-O1v_OFu_na3gT0-ReVhgfKHPOxXwfQewPPkbiH___E_cA7RIokU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023382261</pqid></control><display><type>article</type><title>Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies</title><source>Nature</source><creator>Kumar, Gaurav ; Tibbitts, Luke ; Newell, Jaclyn ; Panthi, Basu ; Mukhopadhyay, Ahana ; Rioux, Robert M. ; Pursell, Christopher J. ; Janik, Michael ; Chandler, Bert D.</creator><creatorcontrib>Kumar, Gaurav ; Tibbitts, Luke ; Newell, Jaclyn ; Panthi, Basu ; Mukhopadhyay, Ahana ; Rioux, Robert M. ; Pursell, Christopher J. ; Janik, Michael ; Chandler, Bert D. ; Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><description>Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal–support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles. Understanding how a supporting material can change the surface chemistry of the nanoparticle catalysts that it hosts is critical to tuning catalytic properties. Experimental Hammett studies and density functional theory calculations show that differences in reactivity can be attributed to differences in the electron density at metal active sites, which arises from differences in electron donation from the support.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2911</identifier><identifier>PMID: 29461519</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/542 ; 639/638/77/885 ; 639/638/77/887 ; 639/638/898 ; Analytical Chemistry ; Benzyl alcohol ; Biochemistry ; Catalysis ; Catalysts ; Catalytic activity ; Chemistry ; Chemistry/Food Science ; Density functional theory ; Gold ; Inorganic Chemistry ; Metal oxides ; Metals ; Nanoparticles ; Organic Chemistry ; Oxidation ; Oxides ; Physical Chemistry</subject><ispartof>Nature chemistry, 2018-03, Vol.10 (3), p.268-274</ispartof><rights>Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3</citedby><cites>FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3</cites><orcidid>0000-0002-6094-1705 ; 0000-0002-8621-0361 ; 0000000286210361 ; 0000000260941705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29461519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1539778$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Gaurav</creatorcontrib><creatorcontrib>Tibbitts, Luke</creatorcontrib><creatorcontrib>Newell, Jaclyn</creatorcontrib><creatorcontrib>Panthi, Basu</creatorcontrib><creatorcontrib>Mukhopadhyay, Ahana</creatorcontrib><creatorcontrib>Rioux, Robert M.</creatorcontrib><creatorcontrib>Pursell, Christopher J.</creatorcontrib><creatorcontrib>Janik, Michael</creatorcontrib><creatorcontrib>Chandler, Bert D.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><title>Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal–support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles. Understanding how a supporting material can change the surface chemistry of the nanoparticle catalysts that it hosts is critical to tuning catalytic properties. Experimental Hammett studies and density functional theory calculations show that differences in reactivity can be attributed to differences in the electron density at metal active sites, which arises from differences in electron donation from the support.</description><subject>639/638/542</subject><subject>639/638/77/885</subject><subject>639/638/77/887</subject><subject>639/638/898</subject><subject>Analytical Chemistry</subject><subject>Benzyl alcohol</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Density functional theory</subject><subject>Gold</subject><subject>Inorganic Chemistry</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Physical Chemistry</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpt0U1rFTEYBeBBFFurG3-ABN2IMjWfk5ll6YctFLqp6yGTeac3ZSYZ8yaF-uub29tWEFcJ5OGEw6mqj4weMiraH95uYDnkHWOvqn2mlaqlkN3rl7uge9U7xFtKGyVY87ba451smGLdfvXn9M7M2STnb8jopgkieAtInCdpA8TY5O6gRpeAwAw2xeCdRRImgnldQ0wwkqNMvPFhNTE5OwOxJpn5HhOSjNvcc7MskBIxfiQnZ9cEUx4d4PvqzWRmhA9P50H16-z0-vi8vrz6eXF8dFlbKWWqQTFtxk62yoxUtYPVdJq0pMOgAEq3rlFcU9kNbWM1NwPj0lAYaMOHRulmEAfV511uwOR6tKWL3djgfanTMyU6rduCvu7QGsPvDJj6xaGFeTYeQsaeU6oZ44KxQr_8Q29Djr5UKIoL0XLebNW3nbIxIEaY-jW6xcT7ntF-O1v_OFu_na3gT0-ReVhgfKHPOxXwfQewPPkbiH___E_cA7RIokU</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Kumar, Gaurav</creator><creator>Tibbitts, Luke</creator><creator>Newell, Jaclyn</creator><creator>Panthi, Basu</creator><creator>Mukhopadhyay, Ahana</creator><creator>Rioux, Robert M.</creator><creator>Pursell, Christopher J.</creator><creator>Janik, Michael</creator><creator>Chandler, Bert D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6094-1705</orcidid><orcidid>https://orcid.org/0000-0002-8621-0361</orcidid><orcidid>https://orcid.org/0000000286210361</orcidid><orcidid>https://orcid.org/0000000260941705</orcidid></search><sort><creationdate>20180301</creationdate><title>Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies</title><author>Kumar, Gaurav ; Tibbitts, Luke ; Newell, Jaclyn ; Panthi, Basu ; Mukhopadhyay, Ahana ; Rioux, Robert M. ; Pursell, Christopher J. ; Janik, Michael ; Chandler, Bert D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/638/542</topic><topic>639/638/77/885</topic><topic>639/638/77/887</topic><topic>639/638/898</topic><topic>Analytical Chemistry</topic><topic>Benzyl alcohol</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Density functional theory</topic><topic>Gold</topic><topic>Inorganic Chemistry</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Gaurav</creatorcontrib><creatorcontrib>Tibbitts, Luke</creatorcontrib><creatorcontrib>Newell, Jaclyn</creatorcontrib><creatorcontrib>Panthi, Basu</creatorcontrib><creatorcontrib>Mukhopadhyay, Ahana</creatorcontrib><creatorcontrib>Rioux, Robert M.</creatorcontrib><creatorcontrib>Pursell, Christopher J.</creatorcontrib><creatorcontrib>Janik, Michael</creatorcontrib><creatorcontrib>Chandler, Bert D.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Gaurav</au><au>Tibbitts, Luke</au><au>Newell, Jaclyn</au><au>Panthi, Basu</au><au>Mukhopadhyay, Ahana</au><au>Rioux, Robert M.</au><au>Pursell, Christopher J.</au><au>Janik, Michael</au><au>Chandler, Bert D.</au><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>10</volume><issue>3</issue><spage>268</spage><epage>274</epage><pages>268-274</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal–support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles. Understanding how a supporting material can change the surface chemistry of the nanoparticle catalysts that it hosts is critical to tuning catalytic properties. Experimental Hammett studies and density functional theory calculations show that differences in reactivity can be attributed to differences in the electron density at metal active sites, which arises from differences in electron donation from the support.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29461519</pmid><doi>10.1038/nchem.2911</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6094-1705</orcidid><orcidid>https://orcid.org/0000-0002-8621-0361</orcidid><orcidid>https://orcid.org/0000000286210361</orcidid><orcidid>https://orcid.org/0000000260941705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2018-03, Vol.10 (3), p.268-274
issn 1755-4330
1755-4349
language eng
recordid cdi_osti_scitechconnect_1539778
source Nature
subjects 639/638/542
639/638/77/885
639/638/77/887
639/638/898
Analytical Chemistry
Benzyl alcohol
Biochemistry
Catalysis
Catalysts
Catalytic activity
Chemistry
Chemistry/Food Science
Density functional theory
Gold
Inorganic Chemistry
Metal oxides
Metals
Nanoparticles
Organic Chemistry
Oxidation
Oxides
Physical Chemistry
title Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20differences%20in%20the%20active-site%20electronics%20of%20supported%20Au%20nanoparticle%20catalysts%20using%20Hammett%20and%20DFT%20studies&rft.jtitle=Nature%20chemistry&rft.au=Kumar,%20Gaurav&rft.aucorp=Pennsylvania%20State%20Univ.,%20University%20Park,%20PA%20(United%20States)&rft.date=2018-03-01&rft.volume=10&rft.issue=3&rft.spage=268&rft.epage=274&rft.pages=268-274&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2911&rft_dat=%3Cproquest_osti_%3E2007112311%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-e517ad9485ad058bc70ff740bb5ee33096527049b86c72ab124a0eb062b6576b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2023382261&rft_id=info:pmid/29461519&rfr_iscdi=true