Loading…

Superballistic flow of viscous electron fluid through graphene constrictions

Graphene systems are clean platforms for studying electron–electron (e–e) collisions. Electron transport in graphene constrictions is now found to behave anomalously due to e–e interactions: conductance values exceed the maximum free-electron value. Electron–electron (e–e) collisions can impact tran...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2017-12, Vol.13 (12), p.1182-1185
Main Authors: Krishna Kumar, R., Bandurin, D. A., Pellegrino, F. M. D., Cao, Y., Principi, A., Guo, H., Auton, G. H., Ben Shalom, M., Ponomarenko, L. A., Falkovich, G., Watanabe, K., Taniguchi, T., Grigorieva, I. V., Levitov, L. S., Polini, M., Geim, A. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843
cites cdi_FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843
container_end_page 1185
container_issue 12
container_start_page 1182
container_title Nature physics
container_volume 13
creator Krishna Kumar, R.
Bandurin, D. A.
Pellegrino, F. M. D.
Cao, Y.
Principi, A.
Guo, H.
Auton, G. H.
Ben Shalom, M.
Ponomarenko, L. A.
Falkovich, G.
Watanabe, K.
Taniguchi, T.
Grigorieva, I. V.
Levitov, L. S.
Polini, M.
Geim, A. K.
description Graphene systems are clean platforms for studying electron–electron (e–e) collisions. Electron transport in graphene constrictions is now found to behave anomalously due to e–e interactions: conductance values exceed the maximum free-electron value. Electron–electron (e–e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways 1 , 2 , 3 , 4 , 5 , 6 . Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e–e scattering 7 , 8 , 9 , 10 , 11 . Only recently, sufficiently clean electron systems with transport dominated by e–e collisions have become available, showing behaviour characteristic of highly viscous fluids 12 , 13 , 14 . Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene 15 . Notably, the measured conductance exceeds the maximum conductance possible for free electrons 16 , 17 . This anomalous behaviour is attributed to collective movement of interacting electrons, which ‘shields’ individual carriers from momentum loss at sample boundaries 18 , 19 . The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices.
doi_str_mv 10.1038/nphys4240
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1972274921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843</originalsourceid><addsrcrecordid>eNplkM1KxDAYRYMoOI4ufIOgK4Vq_to0SxnGHxhwoa5Dm0mmGWpSk1SZtzdSGQRX34XvcDlcAM4xusGI1rdu6HaREYYOwAxzVhaE1fhwnzk9BicxbhFipMJ0BlYv46BD2_S9jckqaHr_Bb2BnzYqP0aoe61S8C4_RruGqQt-3HRwE5qh005D5V1MwapkczgFR6bpoz77vXPwdr98XTwWq-eHp8XdqlCMoFRwXXFGzLrChqEWiVZVoq5EWXKRbZVAJVKKIoNNgyua_VFT0rpuS2IIampG5-Bi6vXZWUZlk1ZdNnHZVeKSCi5ohi4naAj-Y9Qxya0fg8teEgtOCGeC4ExdTZQKPsagjRyCfW_CTmIkfxaV-0Uzez2xMTNuo8Ofxn_wNxpWd2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972274921</pqid></control><display><type>article</type><title>Superballistic flow of viscous electron fluid through graphene constrictions</title><source>Nature Publishing Group</source><creator>Krishna Kumar, R. ; Bandurin, D. A. ; Pellegrino, F. M. D. ; Cao, Y. ; Principi, A. ; Guo, H. ; Auton, G. H. ; Ben Shalom, M. ; Ponomarenko, L. A. ; Falkovich, G. ; Watanabe, K. ; Taniguchi, T. ; Grigorieva, I. V. ; Levitov, L. S. ; Polini, M. ; Geim, A. K.</creator><creatorcontrib>Krishna Kumar, R. ; Bandurin, D. A. ; Pellegrino, F. M. D. ; Cao, Y. ; Principi, A. ; Guo, H. ; Auton, G. H. ; Ben Shalom, M. ; Ponomarenko, L. A. ; Falkovich, G. ; Watanabe, K. ; Taniguchi, T. ; Grigorieva, I. V. ; Levitov, L. S. ; Polini, M. ; Geim, A. K. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Graphene systems are clean platforms for studying electron–electron (e–e) collisions. Electron transport in graphene constrictions is now found to behave anomalously due to e–e interactions: conductance values exceed the maximum free-electron value. Electron–electron (e–e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways 1 , 2 , 3 , 4 , 5 , 6 . Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e–e scattering 7 , 8 , 9 , 10 , 11 . Only recently, sufficiently clean electron systems with transport dominated by e–e collisions have become available, showing behaviour characteristic of highly viscous fluids 12 , 13 , 14 . Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene 15 . Notably, the measured conductance exceeds the maximum conductance possible for free electrons 16 , 17 . This anomalous behaviour is attributed to collective movement of interacting electrons, which ‘shields’ individual carriers from momentum loss at sample boundaries 18 , 19 . The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys4240</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/301/357/918 ; 639/766/119/995 ; 639/766/119/999 ; Atomic ; Classical and Continuum Physics ; Collisions ; Complex Systems ; Condensed Matter Physics ; Conductance ; Constrictions ; Electron transport ; Electrons ; Free electrons ; Geometry ; Graphene ; High temperature ; letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Resistance ; Scattering ; Temperature ; Temperature dependence ; Theoretical ; Viscous fluids</subject><ispartof>Nature physics, 2017-12, Vol.13 (12), p.1182-1185</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Dec 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843</citedby><cites>FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843</cites><orcidid>0000-0003-3701-8119 ; 0000-0001-5991-7778 ; 0000-0003-2861-8331 ; 0000000337018119 ; 0000000328618331 ; 0000000159917778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1539793$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishna Kumar, R.</creatorcontrib><creatorcontrib>Bandurin, D. A.</creatorcontrib><creatorcontrib>Pellegrino, F. M. D.</creatorcontrib><creatorcontrib>Cao, Y.</creatorcontrib><creatorcontrib>Principi, A.</creatorcontrib><creatorcontrib>Guo, H.</creatorcontrib><creatorcontrib>Auton, G. H.</creatorcontrib><creatorcontrib>Ben Shalom, M.</creatorcontrib><creatorcontrib>Ponomarenko, L. A.</creatorcontrib><creatorcontrib>Falkovich, G.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Grigorieva, I. V.</creatorcontrib><creatorcontrib>Levitov, L. S.</creatorcontrib><creatorcontrib>Polini, M.</creatorcontrib><creatorcontrib>Geim, A. K.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Superballistic flow of viscous electron fluid through graphene constrictions</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Graphene systems are clean platforms for studying electron–electron (e–e) collisions. Electron transport in graphene constrictions is now found to behave anomalously due to e–e interactions: conductance values exceed the maximum free-electron value. Electron–electron (e–e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways 1 , 2 , 3 , 4 , 5 , 6 . Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e–e scattering 7 , 8 , 9 , 10 , 11 . Only recently, sufficiently clean electron systems with transport dominated by e–e collisions have become available, showing behaviour characteristic of highly viscous fluids 12 , 13 , 14 . Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene 15 . Notably, the measured conductance exceeds the maximum conductance possible for free electrons 16 , 17 . This anomalous behaviour is attributed to collective movement of interacting electrons, which ‘shields’ individual carriers from momentum loss at sample boundaries 18 , 19 . The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices.</description><subject>142/126</subject><subject>639/301/357/918</subject><subject>639/766/119/995</subject><subject>639/766/119/999</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Collisions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductance</subject><subject>Constrictions</subject><subject>Electron transport</subject><subject>Electrons</subject><subject>Free electrons</subject><subject>Geometry</subject><subject>Graphene</subject><subject>High temperature</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Resistance</subject><subject>Scattering</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Theoretical</subject><subject>Viscous fluids</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNplkM1KxDAYRYMoOI4ufIOgK4Vq_to0SxnGHxhwoa5Dm0mmGWpSk1SZtzdSGQRX34XvcDlcAM4xusGI1rdu6HaREYYOwAxzVhaE1fhwnzk9BicxbhFipMJ0BlYv46BD2_S9jckqaHr_Bb2BnzYqP0aoe61S8C4_RruGqQt-3HRwE5qh005D5V1MwapkczgFR6bpoz77vXPwdr98XTwWq-eHp8XdqlCMoFRwXXFGzLrChqEWiVZVoq5EWXKRbZVAJVKKIoNNgyua_VFT0rpuS2IIampG5-Bi6vXZWUZlk1ZdNnHZVeKSCi5ohi4naAj-Y9Qxya0fg8teEgtOCGeC4ExdTZQKPsagjRyCfW_CTmIkfxaV-0Uzez2xMTNuo8Ofxn_wNxpWd2Q</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Krishna Kumar, R.</creator><creator>Bandurin, D. A.</creator><creator>Pellegrino, F. M. D.</creator><creator>Cao, Y.</creator><creator>Principi, A.</creator><creator>Guo, H.</creator><creator>Auton, G. H.</creator><creator>Ben Shalom, M.</creator><creator>Ponomarenko, L. A.</creator><creator>Falkovich, G.</creator><creator>Watanabe, K.</creator><creator>Taniguchi, T.</creator><creator>Grigorieva, I. V.</creator><creator>Levitov, L. S.</creator><creator>Polini, M.</creator><creator>Geim, A. K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-5991-7778</orcidid><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000328618331</orcidid><orcidid>https://orcid.org/0000000159917778</orcidid></search><sort><creationdate>20171201</creationdate><title>Superballistic flow of viscous electron fluid through graphene constrictions</title><author>Krishna Kumar, R. ; Bandurin, D. A. ; Pellegrino, F. M. D. ; Cao, Y. ; Principi, A. ; Guo, H. ; Auton, G. H. ; Ben Shalom, M. ; Ponomarenko, L. A. ; Falkovich, G. ; Watanabe, K. ; Taniguchi, T. ; Grigorieva, I. V. ; Levitov, L. S. ; Polini, M. ; Geim, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>142/126</topic><topic>639/301/357/918</topic><topic>639/766/119/995</topic><topic>639/766/119/999</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Collisions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductance</topic><topic>Constrictions</topic><topic>Electron transport</topic><topic>Electrons</topic><topic>Free electrons</topic><topic>Geometry</topic><topic>Graphene</topic><topic>High temperature</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Resistance</topic><topic>Scattering</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Theoretical</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishna Kumar, R.</creatorcontrib><creatorcontrib>Bandurin, D. A.</creatorcontrib><creatorcontrib>Pellegrino, F. M. D.</creatorcontrib><creatorcontrib>Cao, Y.</creatorcontrib><creatorcontrib>Principi, A.</creatorcontrib><creatorcontrib>Guo, H.</creatorcontrib><creatorcontrib>Auton, G. H.</creatorcontrib><creatorcontrib>Ben Shalom, M.</creatorcontrib><creatorcontrib>Ponomarenko, L. A.</creatorcontrib><creatorcontrib>Falkovich, G.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Grigorieva, I. V.</creatorcontrib><creatorcontrib>Levitov, L. S.</creatorcontrib><creatorcontrib>Polini, M.</creatorcontrib><creatorcontrib>Geim, A. K.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishna Kumar, R.</au><au>Bandurin, D. A.</au><au>Pellegrino, F. M. D.</au><au>Cao, Y.</au><au>Principi, A.</au><au>Guo, H.</au><au>Auton, G. H.</au><au>Ben Shalom, M.</au><au>Ponomarenko, L. A.</au><au>Falkovich, G.</au><au>Watanabe, K.</au><au>Taniguchi, T.</au><au>Grigorieva, I. V.</au><au>Levitov, L. S.</au><au>Polini, M.</au><au>Geim, A. K.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superballistic flow of viscous electron fluid through graphene constrictions</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>13</volume><issue>12</issue><spage>1182</spage><epage>1185</epage><pages>1182-1185</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Graphene systems are clean platforms for studying electron–electron (e–e) collisions. Electron transport in graphene constrictions is now found to behave anomalously due to e–e interactions: conductance values exceed the maximum free-electron value. Electron–electron (e–e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways 1 , 2 , 3 , 4 , 5 , 6 . Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e–e scattering 7 , 8 , 9 , 10 , 11 . Only recently, sufficiently clean electron systems with transport dominated by e–e collisions have become available, showing behaviour characteristic of highly viscous fluids 12 , 13 , 14 . Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene 15 . Notably, the measured conductance exceeds the maximum conductance possible for free electrons 16 , 17 . This anomalous behaviour is attributed to collective movement of interacting electrons, which ‘shields’ individual carriers from momentum loss at sample boundaries 18 , 19 . The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys4240</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-5991-7778</orcidid><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000328618331</orcidid><orcidid>https://orcid.org/0000000159917778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2017-12, Vol.13 (12), p.1182-1185
issn 1745-2473
1745-2481
language eng
recordid cdi_osti_scitechconnect_1539793
source Nature Publishing Group
subjects 142/126
639/301/357/918
639/766/119/995
639/766/119/999
Atomic
Classical and Continuum Physics
Collisions
Complex Systems
Condensed Matter Physics
Conductance
Constrictions
Electron transport
Electrons
Free electrons
Geometry
Graphene
High temperature
letter
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Resistance
Scattering
Temperature
Temperature dependence
Theoretical
Viscous fluids
title Superballistic flow of viscous electron fluid through graphene constrictions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superballistic%20flow%20of%20viscous%20electron%20fluid%20through%20graphene%20constrictions&rft.jtitle=Nature%20physics&rft.au=Krishna%20Kumar,%20R.&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2017-12-01&rft.volume=13&rft.issue=12&rft.spage=1182&rft.epage=1185&rft.pages=1182-1185&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys4240&rft_dat=%3Cproquest_osti_%3E1972274921%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1972274921&rft_id=info:pmid/&rfr_iscdi=true