Loading…
Superballistic flow of viscous electron fluid through graphene constrictions
Graphene systems are clean platforms for studying electron–electron (e–e) collisions. Electron transport in graphene constrictions is now found to behave anomalously due to e–e interactions: conductance values exceed the maximum free-electron value. Electron–electron (e–e) collisions can impact tran...
Saved in:
Published in: | Nature physics 2017-12, Vol.13 (12), p.1182-1185 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843 |
container_end_page | 1185 |
container_issue | 12 |
container_start_page | 1182 |
container_title | Nature physics |
container_volume | 13 |
creator | Krishna Kumar, R. Bandurin, D. A. Pellegrino, F. M. D. Cao, Y. Principi, A. Guo, H. Auton, G. H. Ben Shalom, M. Ponomarenko, L. A. Falkovich, G. Watanabe, K. Taniguchi, T. Grigorieva, I. V. Levitov, L. S. Polini, M. Geim, A. K. |
description | Graphene systems are clean platforms for studying electron–electron (e–e) collisions. Electron transport in graphene constrictions is now found to behave anomalously due to e–e interactions: conductance values exceed the maximum free-electron value.
Electron–electron (e–e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways
1
,
2
,
3
,
4
,
5
,
6
. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e–e scattering
7
,
8
,
9
,
10
,
11
. Only recently, sufficiently clean electron systems with transport dominated by e–e collisions have become available, showing behaviour characteristic of highly viscous fluids
12
,
13
,
14
. Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene
15
. Notably, the measured conductance exceeds the maximum conductance possible for free electrons
16
,
17
. This anomalous behaviour is attributed to collective movement of interacting electrons, which ‘shields’ individual carriers from momentum loss at sample boundaries
18
,
19
. The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices. |
doi_str_mv | 10.1038/nphys4240 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1972274921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843</originalsourceid><addsrcrecordid>eNplkM1KxDAYRYMoOI4ufIOgK4Vq_to0SxnGHxhwoa5Dm0mmGWpSk1SZtzdSGQRX34XvcDlcAM4xusGI1rdu6HaREYYOwAxzVhaE1fhwnzk9BicxbhFipMJ0BlYv46BD2_S9jckqaHr_Bb2BnzYqP0aoe61S8C4_RruGqQt-3HRwE5qh005D5V1MwapkczgFR6bpoz77vXPwdr98XTwWq-eHp8XdqlCMoFRwXXFGzLrChqEWiVZVoq5EWXKRbZVAJVKKIoNNgyua_VFT0rpuS2IIampG5-Bi6vXZWUZlk1ZdNnHZVeKSCi5ohi4naAj-Y9Qxya0fg8teEgtOCGeC4ExdTZQKPsagjRyCfW_CTmIkfxaV-0Uzez2xMTNuo8Ofxn_wNxpWd2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972274921</pqid></control><display><type>article</type><title>Superballistic flow of viscous electron fluid through graphene constrictions</title><source>Nature Publishing Group</source><creator>Krishna Kumar, R. ; Bandurin, D. A. ; Pellegrino, F. M. D. ; Cao, Y. ; Principi, A. ; Guo, H. ; Auton, G. H. ; Ben Shalom, M. ; Ponomarenko, L. A. ; Falkovich, G. ; Watanabe, K. ; Taniguchi, T. ; Grigorieva, I. V. ; Levitov, L. S. ; Polini, M. ; Geim, A. K.</creator><creatorcontrib>Krishna Kumar, R. ; Bandurin, D. A. ; Pellegrino, F. M. D. ; Cao, Y. ; Principi, A. ; Guo, H. ; Auton, G. H. ; Ben Shalom, M. ; Ponomarenko, L. A. ; Falkovich, G. ; Watanabe, K. ; Taniguchi, T. ; Grigorieva, I. V. ; Levitov, L. S. ; Polini, M. ; Geim, A. K. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Graphene systems are clean platforms for studying electron–electron (e–e) collisions. Electron transport in graphene constrictions is now found to behave anomalously due to e–e interactions: conductance values exceed the maximum free-electron value.
Electron–electron (e–e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways
1
,
2
,
3
,
4
,
5
,
6
. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e–e scattering
7
,
8
,
9
,
10
,
11
. Only recently, sufficiently clean electron systems with transport dominated by e–e collisions have become available, showing behaviour characteristic of highly viscous fluids
12
,
13
,
14
. Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene
15
. Notably, the measured conductance exceeds the maximum conductance possible for free electrons
16
,
17
. This anomalous behaviour is attributed to collective movement of interacting electrons, which ‘shields’ individual carriers from momentum loss at sample boundaries
18
,
19
. The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys4240</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/301/357/918 ; 639/766/119/995 ; 639/766/119/999 ; Atomic ; Classical and Continuum Physics ; Collisions ; Complex Systems ; Condensed Matter Physics ; Conductance ; Constrictions ; Electron transport ; Electrons ; Free electrons ; Geometry ; Graphene ; High temperature ; letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Resistance ; Scattering ; Temperature ; Temperature dependence ; Theoretical ; Viscous fluids</subject><ispartof>Nature physics, 2017-12, Vol.13 (12), p.1182-1185</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Dec 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843</citedby><cites>FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843</cites><orcidid>0000-0003-3701-8119 ; 0000-0001-5991-7778 ; 0000-0003-2861-8331 ; 0000000337018119 ; 0000000328618331 ; 0000000159917778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1539793$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishna Kumar, R.</creatorcontrib><creatorcontrib>Bandurin, D. A.</creatorcontrib><creatorcontrib>Pellegrino, F. M. D.</creatorcontrib><creatorcontrib>Cao, Y.</creatorcontrib><creatorcontrib>Principi, A.</creatorcontrib><creatorcontrib>Guo, H.</creatorcontrib><creatorcontrib>Auton, G. H.</creatorcontrib><creatorcontrib>Ben Shalom, M.</creatorcontrib><creatorcontrib>Ponomarenko, L. A.</creatorcontrib><creatorcontrib>Falkovich, G.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Grigorieva, I. V.</creatorcontrib><creatorcontrib>Levitov, L. S.</creatorcontrib><creatorcontrib>Polini, M.</creatorcontrib><creatorcontrib>Geim, A. K.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Superballistic flow of viscous electron fluid through graphene constrictions</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Graphene systems are clean platforms for studying electron–electron (e–e) collisions. Electron transport in graphene constrictions is now found to behave anomalously due to e–e interactions: conductance values exceed the maximum free-electron value.
Electron–electron (e–e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways
1
,
2
,
3
,
4
,
5
,
6
. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e–e scattering
7
,
8
,
9
,
10
,
11
. Only recently, sufficiently clean electron systems with transport dominated by e–e collisions have become available, showing behaviour characteristic of highly viscous fluids
12
,
13
,
14
. Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene
15
. Notably, the measured conductance exceeds the maximum conductance possible for free electrons
16
,
17
. This anomalous behaviour is attributed to collective movement of interacting electrons, which ‘shields’ individual carriers from momentum loss at sample boundaries
18
,
19
. The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices.</description><subject>142/126</subject><subject>639/301/357/918</subject><subject>639/766/119/995</subject><subject>639/766/119/999</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Collisions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductance</subject><subject>Constrictions</subject><subject>Electron transport</subject><subject>Electrons</subject><subject>Free electrons</subject><subject>Geometry</subject><subject>Graphene</subject><subject>High temperature</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Resistance</subject><subject>Scattering</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Theoretical</subject><subject>Viscous fluids</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNplkM1KxDAYRYMoOI4ufIOgK4Vq_to0SxnGHxhwoa5Dm0mmGWpSk1SZtzdSGQRX34XvcDlcAM4xusGI1rdu6HaREYYOwAxzVhaE1fhwnzk9BicxbhFipMJ0BlYv46BD2_S9jckqaHr_Bb2BnzYqP0aoe61S8C4_RruGqQt-3HRwE5qh005D5V1MwapkczgFR6bpoz77vXPwdr98XTwWq-eHp8XdqlCMoFRwXXFGzLrChqEWiVZVoq5EWXKRbZVAJVKKIoNNgyua_VFT0rpuS2IIampG5-Bi6vXZWUZlk1ZdNnHZVeKSCi5ohi4naAj-Y9Qxya0fg8teEgtOCGeC4ExdTZQKPsagjRyCfW_CTmIkfxaV-0Uzez2xMTNuo8Ofxn_wNxpWd2Q</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Krishna Kumar, R.</creator><creator>Bandurin, D. A.</creator><creator>Pellegrino, F. M. D.</creator><creator>Cao, Y.</creator><creator>Principi, A.</creator><creator>Guo, H.</creator><creator>Auton, G. H.</creator><creator>Ben Shalom, M.</creator><creator>Ponomarenko, L. A.</creator><creator>Falkovich, G.</creator><creator>Watanabe, K.</creator><creator>Taniguchi, T.</creator><creator>Grigorieva, I. V.</creator><creator>Levitov, L. S.</creator><creator>Polini, M.</creator><creator>Geim, A. K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-5991-7778</orcidid><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000328618331</orcidid><orcidid>https://orcid.org/0000000159917778</orcidid></search><sort><creationdate>20171201</creationdate><title>Superballistic flow of viscous electron fluid through graphene constrictions</title><author>Krishna Kumar, R. ; Bandurin, D. A. ; Pellegrino, F. M. D. ; Cao, Y. ; Principi, A. ; Guo, H. ; Auton, G. H. ; Ben Shalom, M. ; Ponomarenko, L. A. ; Falkovich, G. ; Watanabe, K. ; Taniguchi, T. ; Grigorieva, I. V. ; Levitov, L. S. ; Polini, M. ; Geim, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>142/126</topic><topic>639/301/357/918</topic><topic>639/766/119/995</topic><topic>639/766/119/999</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Collisions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductance</topic><topic>Constrictions</topic><topic>Electron transport</topic><topic>Electrons</topic><topic>Free electrons</topic><topic>Geometry</topic><topic>Graphene</topic><topic>High temperature</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Resistance</topic><topic>Scattering</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Theoretical</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishna Kumar, R.</creatorcontrib><creatorcontrib>Bandurin, D. A.</creatorcontrib><creatorcontrib>Pellegrino, F. M. D.</creatorcontrib><creatorcontrib>Cao, Y.</creatorcontrib><creatorcontrib>Principi, A.</creatorcontrib><creatorcontrib>Guo, H.</creatorcontrib><creatorcontrib>Auton, G. H.</creatorcontrib><creatorcontrib>Ben Shalom, M.</creatorcontrib><creatorcontrib>Ponomarenko, L. A.</creatorcontrib><creatorcontrib>Falkovich, G.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Grigorieva, I. V.</creatorcontrib><creatorcontrib>Levitov, L. S.</creatorcontrib><creatorcontrib>Polini, M.</creatorcontrib><creatorcontrib>Geim, A. K.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishna Kumar, R.</au><au>Bandurin, D. A.</au><au>Pellegrino, F. M. D.</au><au>Cao, Y.</au><au>Principi, A.</au><au>Guo, H.</au><au>Auton, G. H.</au><au>Ben Shalom, M.</au><au>Ponomarenko, L. A.</au><au>Falkovich, G.</au><au>Watanabe, K.</au><au>Taniguchi, T.</au><au>Grigorieva, I. V.</au><au>Levitov, L. S.</au><au>Polini, M.</au><au>Geim, A. K.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superballistic flow of viscous electron fluid through graphene constrictions</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>13</volume><issue>12</issue><spage>1182</spage><epage>1185</epage><pages>1182-1185</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Graphene systems are clean platforms for studying electron–electron (e–e) collisions. Electron transport in graphene constrictions is now found to behave anomalously due to e–e interactions: conductance values exceed the maximum free-electron value.
Electron–electron (e–e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways
1
,
2
,
3
,
4
,
5
,
6
. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e–e scattering
7
,
8
,
9
,
10
,
11
. Only recently, sufficiently clean electron systems with transport dominated by e–e collisions have become available, showing behaviour characteristic of highly viscous fluids
12
,
13
,
14
. Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene
15
. Notably, the measured conductance exceeds the maximum conductance possible for free electrons
16
,
17
. This anomalous behaviour is attributed to collective movement of interacting electrons, which ‘shields’ individual carriers from momentum loss at sample boundaries
18
,
19
. The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys4240</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-5991-7778</orcidid><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000328618331</orcidid><orcidid>https://orcid.org/0000000159917778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2017-12, Vol.13 (12), p.1182-1185 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_osti_scitechconnect_1539793 |
source | Nature Publishing Group |
subjects | 142/126 639/301/357/918 639/766/119/995 639/766/119/999 Atomic Classical and Continuum Physics Collisions Complex Systems Condensed Matter Physics Conductance Constrictions Electron transport Electrons Free electrons Geometry Graphene High temperature letter Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Resistance Scattering Temperature Temperature dependence Theoretical Viscous fluids |
title | Superballistic flow of viscous electron fluid through graphene constrictions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superballistic%20flow%20of%20viscous%20electron%20fluid%20through%20graphene%20constrictions&rft.jtitle=Nature%20physics&rft.au=Krishna%20Kumar,%20R.&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2017-12-01&rft.volume=13&rft.issue=12&rft.spage=1182&rft.epage=1185&rft.pages=1182-1185&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys4240&rft_dat=%3Cproquest_osti_%3E1972274921%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-7e6742fd61f40b09bc698695579248c9050cc30f1fa1634810a5388b52f20a843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1972274921&rft_id=info:pmid/&rfr_iscdi=true |