Loading…

The integrals determining orientational order in liquid crystals by x-ray diffraction revisited

The orientational distribution function f([beta]) relative to the average orientation direction or director of liquid crystals and related materials can be obtained from the angular variation of the diffracted x-ray intensity distribution I(θ) of the wide-angle or equatorial arcs. The two quantities...

Full description

Saved in:
Bibliographic Details
Published in:Liquid crystals 2018-04, Vol.45 (5), p.680-686
Main Authors: Agra-Kooijman, Deña M., Fisch, Michael R., Kumar, Satyendra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c308t-d52ee0899f3f79b96e2ba2d31f0d1a850b4bd273acca7af1970b7caf2b2816553
cites cdi_FETCH-LOGICAL-c308t-d52ee0899f3f79b96e2ba2d31f0d1a850b4bd273acca7af1970b7caf2b2816553
container_end_page 686
container_issue 5
container_start_page 680
container_title Liquid crystals
container_volume 45
creator Agra-Kooijman, Deña M.
Fisch, Michael R.
Kumar, Satyendra
description The orientational distribution function f([beta]) relative to the average orientation direction or director of liquid crystals and related materials can be obtained from the angular variation of the diffracted x-ray intensity distribution I(θ) of the wide-angle or equatorial arcs. The two quantities f([beta]) and I(θ) are related by an integral equation. Two different integral equations, one by Kratky and the other by Leadbetter and Norris describing the same phenomena, are the basis of the analyses. There has been discussion of which of the equations is correct; however, the form first derived by Kratky is correct. In this paper, solutions to the Kratky form of the equation are presented. Analytical, closed-form expressions for [Formula omitted.] for n = 0, 1, 2 and 3 are presented. These allow calculation of the first three non-zero orientational order parameters. Experimental data are analysed using solutions to the Kratky kernel and the often used Leadbetter-Norris kernel as a series and in integral form, and the method of Lovell and Mitchell, based on symmetry considerations. The results show that the five approaches obtain indistinguishable values for the second- and fourth-order parameters in the range commonly encountered in liquid crystal studies.
doi_str_mv 10.1080/02678292.2017.1372526
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1540328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019768550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-d52ee0899f3f79b96e2ba2d31f0d1a850b4bd273acca7af1970b7caf2b2816553</originalsourceid><addsrcrecordid>eNo10MtqAyEUgGEpLTS9PEJB2vWkR42jsyyhNwh0k67F8ZIYkplETem8fR2SrkT4zhF_hB4ITAlIeAZaC0kbOqVAxJQwQTmtL9CEsLquuOT8Ek1GU43oGt2ktAEAIaWYILVcOxy67FZRbxO2Lru4C13oVriPwXVZ59B3eltu1sUi8TYcjsFiE4eUx5F2wL9V1AO2wfuozehxdD8hhezsHbryRbn783mLvt9el_OPavH1_jl_WVSGgcyV5dQ5kE3jmRdN29SOtppaRjxYoiWHdtZaKpg2RgvtSSOgFUZ72lJJas7ZLXo87e1TDiqZ8rZZm77rnMmK8BkwKgt6OqF97A9Hl7La9MdYfpdUSdeIurSCovhJmdinFJ1X-xh2Og6KgBqDq__g45RQ5-DsDxtHdH0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019768550</pqid></control><display><type>article</type><title>The integrals determining orientational order in liquid crystals by x-ray diffraction revisited</title><source>Taylor and Francis Science and Technology Collection</source><creator>Agra-Kooijman, Deña M. ; Fisch, Michael R. ; Kumar, Satyendra</creator><creatorcontrib>Agra-Kooijman, Deña M. ; Fisch, Michael R. ; Kumar, Satyendra ; Kent State Univ., Kent, OH (United States)</creatorcontrib><description>The orientational distribution function f([beta]) relative to the average orientation direction or director of liquid crystals and related materials can be obtained from the angular variation of the diffracted x-ray intensity distribution I(θ) of the wide-angle or equatorial arcs. The two quantities f([beta]) and I(θ) are related by an integral equation. Two different integral equations, one by Kratky and the other by Leadbetter and Norris describing the same phenomena, are the basis of the analyses. There has been discussion of which of the equations is correct; however, the form first derived by Kratky is correct. In this paper, solutions to the Kratky form of the equation are presented. Analytical, closed-form expressions for [Formula omitted.] for n = 0, 1, 2 and 3 are presented. These allow calculation of the first three non-zero orientational order parameters. Experimental data are analysed using solutions to the Kratky kernel and the often used Leadbetter-Norris kernel as a series and in integral form, and the method of Lovell and Mitchell, based on symmetry considerations. The results show that the five approaches obtain indistinguishable values for the second- and fourth-order parameters in the range commonly encountered in liquid crystal studies.</description><identifier>ISSN: 0267-8292</identifier><identifier>EISSN: 1366-5855</identifier><identifier>DOI: 10.1080/02678292.2017.1372526</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Ltd</publisher><subject>Beta rays ; Chemistry ; Crystallography ; Crystals ; Distribution functions ; Integral equations ; Liquid crystals ; Materials Science ; Mathematical analysis ; Order parameters ; X-ray diffraction</subject><ispartof>Liquid crystals, 2018-04, Vol.45 (5), p.680-686</ispartof><rights>2017 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-d52ee0899f3f79b96e2ba2d31f0d1a850b4bd273acca7af1970b7caf2b2816553</citedby><cites>FETCH-LOGICAL-c308t-d52ee0899f3f79b96e2ba2d31f0d1a850b4bd273acca7af1970b7caf2b2816553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1540328$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Agra-Kooijman, Deña M.</creatorcontrib><creatorcontrib>Fisch, Michael R.</creatorcontrib><creatorcontrib>Kumar, Satyendra</creatorcontrib><creatorcontrib>Kent State Univ., Kent, OH (United States)</creatorcontrib><title>The integrals determining orientational order in liquid crystals by x-ray diffraction revisited</title><title>Liquid crystals</title><description>The orientational distribution function f([beta]) relative to the average orientation direction or director of liquid crystals and related materials can be obtained from the angular variation of the diffracted x-ray intensity distribution I(θ) of the wide-angle or equatorial arcs. The two quantities f([beta]) and I(θ) are related by an integral equation. Two different integral equations, one by Kratky and the other by Leadbetter and Norris describing the same phenomena, are the basis of the analyses. There has been discussion of which of the equations is correct; however, the form first derived by Kratky is correct. In this paper, solutions to the Kratky form of the equation are presented. Analytical, closed-form expressions for [Formula omitted.] for n = 0, 1, 2 and 3 are presented. These allow calculation of the first three non-zero orientational order parameters. Experimental data are analysed using solutions to the Kratky kernel and the often used Leadbetter-Norris kernel as a series and in integral form, and the method of Lovell and Mitchell, based on symmetry considerations. The results show that the five approaches obtain indistinguishable values for the second- and fourth-order parameters in the range commonly encountered in liquid crystal studies.</description><subject>Beta rays</subject><subject>Chemistry</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Distribution functions</subject><subject>Integral equations</subject><subject>Liquid crystals</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Order parameters</subject><subject>X-ray diffraction</subject><issn>0267-8292</issn><issn>1366-5855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo10MtqAyEUgGEpLTS9PEJB2vWkR42jsyyhNwh0k67F8ZIYkplETem8fR2SrkT4zhF_hB4ITAlIeAZaC0kbOqVAxJQwQTmtL9CEsLquuOT8Ek1GU43oGt2ktAEAIaWYILVcOxy67FZRbxO2Lru4C13oVriPwXVZ59B3eltu1sUi8TYcjsFiE4eUx5F2wL9V1AO2wfuozehxdD8hhezsHbryRbn783mLvt9el_OPavH1_jl_WVSGgcyV5dQ5kE3jmRdN29SOtppaRjxYoiWHdtZaKpg2RgvtSSOgFUZ72lJJas7ZLXo87e1TDiqZ8rZZm77rnMmK8BkwKgt6OqF97A9Hl7La9MdYfpdUSdeIurSCovhJmdinFJ1X-xh2Og6KgBqDq__g45RQ5-DsDxtHdH0</recordid><startdate>20180409</startdate><enddate>20180409</enddate><creator>Agra-Kooijman, Deña M.</creator><creator>Fisch, Michael R.</creator><creator>Kumar, Satyendra</creator><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20180409</creationdate><title>The integrals determining orientational order in liquid crystals by x-ray diffraction revisited</title><author>Agra-Kooijman, Deña M. ; Fisch, Michael R. ; Kumar, Satyendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-d52ee0899f3f79b96e2ba2d31f0d1a850b4bd273acca7af1970b7caf2b2816553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Beta rays</topic><topic>Chemistry</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Distribution functions</topic><topic>Integral equations</topic><topic>Liquid crystals</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Order parameters</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agra-Kooijman, Deña M.</creatorcontrib><creatorcontrib>Fisch, Michael R.</creatorcontrib><creatorcontrib>Kumar, Satyendra</creatorcontrib><creatorcontrib>Kent State Univ., Kent, OH (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Liquid crystals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agra-Kooijman, Deña M.</au><au>Fisch, Michael R.</au><au>Kumar, Satyendra</au><aucorp>Kent State Univ., Kent, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The integrals determining orientational order in liquid crystals by x-ray diffraction revisited</atitle><jtitle>Liquid crystals</jtitle><date>2018-04-09</date><risdate>2018</risdate><volume>45</volume><issue>5</issue><spage>680</spage><epage>686</epage><pages>680-686</pages><issn>0267-8292</issn><eissn>1366-5855</eissn><abstract>The orientational distribution function f([beta]) relative to the average orientation direction or director of liquid crystals and related materials can be obtained from the angular variation of the diffracted x-ray intensity distribution I(θ) of the wide-angle or equatorial arcs. The two quantities f([beta]) and I(θ) are related by an integral equation. Two different integral equations, one by Kratky and the other by Leadbetter and Norris describing the same phenomena, are the basis of the analyses. There has been discussion of which of the equations is correct; however, the form first derived by Kratky is correct. In this paper, solutions to the Kratky form of the equation are presented. Analytical, closed-form expressions for [Formula omitted.] for n = 0, 1, 2 and 3 are presented. These allow calculation of the first three non-zero orientational order parameters. Experimental data are analysed using solutions to the Kratky kernel and the often used Leadbetter-Norris kernel as a series and in integral form, and the method of Lovell and Mitchell, based on symmetry considerations. The results show that the five approaches obtain indistinguishable values for the second- and fourth-order parameters in the range commonly encountered in liquid crystal studies.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/02678292.2017.1372526</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0267-8292
ispartof Liquid crystals, 2018-04, Vol.45 (5), p.680-686
issn 0267-8292
1366-5855
language eng
recordid cdi_osti_scitechconnect_1540328
source Taylor and Francis Science and Technology Collection
subjects Beta rays
Chemistry
Crystallography
Crystals
Distribution functions
Integral equations
Liquid crystals
Materials Science
Mathematical analysis
Order parameters
X-ray diffraction
title The integrals determining orientational order in liquid crystals by x-ray diffraction revisited
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20integrals%20determining%20orientational%20order%20in%20liquid%20crystals%20by%20x-ray%20diffraction%20revisited&rft.jtitle=Liquid%20crystals&rft.au=Agra-Kooijman,%20De%C3%B1a%20M.&rft.aucorp=Kent%20State%20Univ.,%20Kent,%20OH%20(United%20States)&rft.date=2018-04-09&rft.volume=45&rft.issue=5&rft.spage=680&rft.epage=686&rft.pages=680-686&rft.issn=0267-8292&rft.eissn=1366-5855&rft_id=info:doi/10.1080/02678292.2017.1372526&rft_dat=%3Cproquest_osti_%3E2019768550%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-d52ee0899f3f79b96e2ba2d31f0d1a850b4bd273acca7af1970b7caf2b2816553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019768550&rft_id=info:pmid/&rfr_iscdi=true