Loading…

Stress-dependence of kinetic transitions at atomistic defects

The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the 5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an acti...

Full description

Saved in:
Bibliographic Details
Published in:Modelling and simulation in materials science and engineering 2018-01, Vol.26 (1), p.15007
Main Authors: Ball, S L, Alexander, K C, Schuh, C A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c260t-8012d17a0e9b10fc18cd853270e8dbe9051b3e426c768c2ccd86600a168a3a443
container_end_page
container_issue 1
container_start_page 15007
container_title Modelling and simulation in materials science and engineering
container_volume 26
creator Ball, S L
Alexander, K C
Schuh, C A
description The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the 5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies.
doi_str_mv 10.1088/1361-651X/aa9587
format article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1540432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>msmsaa9587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-8012d17a0e9b10fc18cd853270e8dbe9051b3e426c768c2ccd86600a168a3a443</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePRbP1p0kTZoePMjiFyx4UMFbSNMpZnWTJYkH_70pFW_CwMC873w9hJxTuKKg1IpySWsp6NvKmE6o9oAs_kqHZAGdFDXwjh-Tk5S2ACAUaxfk-jlHTKkecI9-QG-xCmP14TxmZ6scjU8uu-BTZXKJsHNpEgYc0eZ0So5G85nw7Dcvyevd7cv6od483T-ubza1ZRJyrYCygbYGsOspjJYqOyjBWQuohh47ELTn2DBpW6kss0WVEsBQqQw3TcOX5GKeG8p2nazLaN9t8L4coalooOGsmGA22RhSijjqfXQ7E781BT0x0hMQPQHRM6PScjm3uLDX2_AVffnif_sPkzxnUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stress-dependence of kinetic transitions at atomistic defects</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ball, S L ; Alexander, K C ; Schuh, C A</creator><creatorcontrib>Ball, S L ; Alexander, K C ; Schuh, C A ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) ; Krell Institute, Ames, IA (United States)</creatorcontrib><description>The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the 5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies.</description><identifier>ISSN: 0965-0393</identifier><identifier>EISSN: 1361-651X</identifier><identifier>DOI: 10.1088/1361-651X/aa9587</identifier><identifier>CODEN: MSMEEU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>activation volume ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; diffusion ; grain boundaries ; kinetics ; MATERIALS SCIENCE</subject><ispartof>Modelling and simulation in materials science and engineering, 2018-01, Vol.26 (1), p.15007</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-8012d17a0e9b10fc18cd853270e8dbe9051b3e426c768c2ccd86600a168a3a443</cites><orcidid>0000-0001-9856-2682 ; 0000000198562682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1540432$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ball, S L</creatorcontrib><creatorcontrib>Alexander, K C</creatorcontrib><creatorcontrib>Schuh, C A</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><title>Stress-dependence of kinetic transitions at atomistic defects</title><title>Modelling and simulation in materials science and engineering</title><addtitle>MSMS</addtitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><description>The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the 5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies.</description><subject>activation volume</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>diffusion</subject><subject>grain boundaries</subject><subject>kinetics</subject><subject>MATERIALS SCIENCE</subject><issn>0965-0393</issn><issn>1361-651X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePRbP1p0kTZoePMjiFyx4UMFbSNMpZnWTJYkH_70pFW_CwMC873w9hJxTuKKg1IpySWsp6NvKmE6o9oAs_kqHZAGdFDXwjh-Tk5S2ACAUaxfk-jlHTKkecI9-QG-xCmP14TxmZ6scjU8uu-BTZXKJsHNpEgYc0eZ0So5G85nw7Dcvyevd7cv6od483T-ubza1ZRJyrYCygbYGsOspjJYqOyjBWQuohh47ELTn2DBpW6kss0WVEsBQqQw3TcOX5GKeG8p2nazLaN9t8L4coalooOGsmGA22RhSijjqfXQ7E781BT0x0hMQPQHRM6PScjm3uLDX2_AVffnif_sPkzxnUA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ball, S L</creator><creator>Alexander, K C</creator><creator>Schuh, C A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9856-2682</orcidid><orcidid>https://orcid.org/0000000198562682</orcidid></search><sort><creationdate>20180101</creationdate><title>Stress-dependence of kinetic transitions at atomistic defects</title><author>Ball, S L ; Alexander, K C ; Schuh, C A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-8012d17a0e9b10fc18cd853270e8dbe9051b3e426c768c2ccd86600a168a3a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>activation volume</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>diffusion</topic><topic>grain boundaries</topic><topic>kinetics</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ball, S L</creatorcontrib><creatorcontrib>Alexander, K C</creatorcontrib><creatorcontrib>Schuh, C A</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Modelling and simulation in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ball, S L</au><au>Alexander, K C</au><au>Schuh, C A</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><aucorp>Krell Institute, Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress-dependence of kinetic transitions at atomistic defects</atitle><jtitle>Modelling and simulation in materials science and engineering</jtitle><stitle>MSMS</stitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>15007</spage><pages>15007-</pages><issn>0965-0393</issn><eissn>1361-651X</eissn><coden>MSMEEU</coden><abstract>The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the 5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1361-651X/aa9587</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9856-2682</orcidid><orcidid>https://orcid.org/0000000198562682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0965-0393
ispartof Modelling and simulation in materials science and engineering, 2018-01, Vol.26 (1), p.15007
issn 0965-0393
1361-651X
language eng
recordid cdi_osti_scitechconnect_1540432
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects activation volume
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
diffusion
grain boundaries
kinetics
MATERIALS SCIENCE
title Stress-dependence of kinetic transitions at atomistic defects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress-dependence%20of%20kinetic%20transitions%20at%20atomistic%20defects&rft.jtitle=Modelling%20and%20simulation%20in%20materials%20science%20and%20engineering&rft.au=Ball,%20S%20L&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2018-01-01&rft.volume=26&rft.issue=1&rft.spage=15007&rft.pages=15007-&rft.issn=0965-0393&rft.eissn=1361-651X&rft.coden=MSMEEU&rft_id=info:doi/10.1088/1361-651X/aa9587&rft_dat=%3Ciop_osti_%3Emsmsaa9587%3C/iop_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c260t-8012d17a0e9b10fc18cd853270e8dbe9051b3e426c768c2ccd86600a168a3a443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true