Loading…
Stress-dependence of kinetic transitions at atomistic defects
The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the 5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an acti...
Saved in:
Published in: | Modelling and simulation in materials science and engineering 2018-01, Vol.26 (1), p.15007 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c260t-8012d17a0e9b10fc18cd853270e8dbe9051b3e426c768c2ccd86600a168a3a443 |
container_end_page | |
container_issue | 1 |
container_start_page | 15007 |
container_title | Modelling and simulation in materials science and engineering |
container_volume | 26 |
creator | Ball, S L Alexander, K C Schuh, C A |
description | The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the 5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies. |
doi_str_mv | 10.1088/1361-651X/aa9587 |
format | article |
fullrecord | <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1540432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>msmsaa9587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-8012d17a0e9b10fc18cd853270e8dbe9051b3e426c768c2ccd86600a168a3a443</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePRbP1p0kTZoePMjiFyx4UMFbSNMpZnWTJYkH_70pFW_CwMC873w9hJxTuKKg1IpySWsp6NvKmE6o9oAs_kqHZAGdFDXwjh-Tk5S2ACAUaxfk-jlHTKkecI9-QG-xCmP14TxmZ6scjU8uu-BTZXKJsHNpEgYc0eZ0So5G85nw7Dcvyevd7cv6od483T-ubza1ZRJyrYCygbYGsOspjJYqOyjBWQuohh47ELTn2DBpW6kss0WVEsBQqQw3TcOX5GKeG8p2nazLaN9t8L4coalooOGsmGA22RhSijjqfXQ7E781BT0x0hMQPQHRM6PScjm3uLDX2_AVffnif_sPkzxnUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stress-dependence of kinetic transitions at atomistic defects</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ball, S L ; Alexander, K C ; Schuh, C A</creator><creatorcontrib>Ball, S L ; Alexander, K C ; Schuh, C A ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) ; Krell Institute, Ames, IA (United States)</creatorcontrib><description>The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the 5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies.</description><identifier>ISSN: 0965-0393</identifier><identifier>EISSN: 1361-651X</identifier><identifier>DOI: 10.1088/1361-651X/aa9587</identifier><identifier>CODEN: MSMEEU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>activation volume ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; diffusion ; grain boundaries ; kinetics ; MATERIALS SCIENCE</subject><ispartof>Modelling and simulation in materials science and engineering, 2018-01, Vol.26 (1), p.15007</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-8012d17a0e9b10fc18cd853270e8dbe9051b3e426c768c2ccd86600a168a3a443</cites><orcidid>0000-0001-9856-2682 ; 0000000198562682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1540432$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ball, S L</creatorcontrib><creatorcontrib>Alexander, K C</creatorcontrib><creatorcontrib>Schuh, C A</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><title>Stress-dependence of kinetic transitions at atomistic defects</title><title>Modelling and simulation in materials science and engineering</title><addtitle>MSMS</addtitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><description>The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the 5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies.</description><subject>activation volume</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>diffusion</subject><subject>grain boundaries</subject><subject>kinetics</subject><subject>MATERIALS SCIENCE</subject><issn>0965-0393</issn><issn>1361-651X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePRbP1p0kTZoePMjiFyx4UMFbSNMpZnWTJYkH_70pFW_CwMC873w9hJxTuKKg1IpySWsp6NvKmE6o9oAs_kqHZAGdFDXwjh-Tk5S2ACAUaxfk-jlHTKkecI9-QG-xCmP14TxmZ6scjU8uu-BTZXKJsHNpEgYc0eZ0So5G85nw7Dcvyevd7cv6od483T-ubza1ZRJyrYCygbYGsOspjJYqOyjBWQuohh47ELTn2DBpW6kss0WVEsBQqQw3TcOX5GKeG8p2nazLaN9t8L4coalooOGsmGA22RhSijjqfXQ7E781BT0x0hMQPQHRM6PScjm3uLDX2_AVffnif_sPkzxnUA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ball, S L</creator><creator>Alexander, K C</creator><creator>Schuh, C A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9856-2682</orcidid><orcidid>https://orcid.org/0000000198562682</orcidid></search><sort><creationdate>20180101</creationdate><title>Stress-dependence of kinetic transitions at atomistic defects</title><author>Ball, S L ; Alexander, K C ; Schuh, C A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-8012d17a0e9b10fc18cd853270e8dbe9051b3e426c768c2ccd86600a168a3a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>activation volume</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>diffusion</topic><topic>grain boundaries</topic><topic>kinetics</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ball, S L</creatorcontrib><creatorcontrib>Alexander, K C</creatorcontrib><creatorcontrib>Schuh, C A</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Modelling and simulation in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ball, S L</au><au>Alexander, K C</au><au>Schuh, C A</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><aucorp>Krell Institute, Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress-dependence of kinetic transitions at atomistic defects</atitle><jtitle>Modelling and simulation in materials science and engineering</jtitle><stitle>MSMS</stitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>15007</spage><pages>15007-</pages><issn>0965-0393</issn><eissn>1361-651X</eissn><coden>MSMEEU</coden><abstract>The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the 5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1361-651X/aa9587</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9856-2682</orcidid><orcidid>https://orcid.org/0000000198562682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-0393 |
ispartof | Modelling and simulation in materials science and engineering, 2018-01, Vol.26 (1), p.15007 |
issn | 0965-0393 1361-651X |
language | eng |
recordid | cdi_osti_scitechconnect_1540432 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | activation volume CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS diffusion grain boundaries kinetics MATERIALS SCIENCE |
title | Stress-dependence of kinetic transitions at atomistic defects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress-dependence%20of%20kinetic%20transitions%20at%20atomistic%20defects&rft.jtitle=Modelling%20and%20simulation%20in%20materials%20science%20and%20engineering&rft.au=Ball,%20S%20L&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2018-01-01&rft.volume=26&rft.issue=1&rft.spage=15007&rft.pages=15007-&rft.issn=0965-0393&rft.eissn=1361-651X&rft.coden=MSMEEU&rft_id=info:doi/10.1088/1361-651X/aa9587&rft_dat=%3Ciop_osti_%3Emsmsaa9587%3C/iop_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c260t-8012d17a0e9b10fc18cd853270e8dbe9051b3e426c768c2ccd86600a168a3a443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |