Loading…
Thermodynamic modeling of the La-Te system aided by first-principles calculations
A complete thermodynamic description of the La-Te binary system is developed by means of CALculation of PHAse Diagram (CALPHAD) method in combination with available experimental data in the literature and the present first-principles calculations based on density functional theory. The intermetallic...
Saved in:
Published in: | Calphad 2018-06, Vol.61 (C), p.227-236 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A complete thermodynamic description of the La-Te binary system is developed by means of CALculation of PHAse Diagram (CALPHAD) method in combination with available experimental data in the literature and the present first-principles calculations based on density functional theory. The intermetallic phases with homogeneity ranges, La3-xTe4 and LaTe2-x, are modeled using a two-sublattice (La,Va)3(Te)4 model and a three-sublattice (La)1(Te)1(Te,Va)1 model based on their structure features, respectively. The intermetallic phases, LaTe and LaTe3, are treated as stoichiometric compounds. The thermodynamic properties of the intermetallic compounds and their corresponding end members at finite temperatures are predicted using first-principles quasi-harmonic approach. The associate solution model is used to describe the short-range ordering behavior of the liquid phase. The calculated phase diagram agrees well with the available phase equilibrium data in the literature. |
---|---|
ISSN: | 0364-5916 1873-2984 |
DOI: | 10.1016/j.calphad.2018.03.003 |