Loading…

Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions

The diesel oxidation catalyst (DOC) is an essential component of modern vehicle emissions control systems. The pervasive challenge for low temperature oxidation of engine exhaust gas is the mutual inhibition between the various pollutants, causing a marked increase in light-off temperature. Using a...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2018-09, Vol.57 (38), p.12715-12725
Main Authors: Song, Yuying, Grabow, Lars C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683
cites cdi_FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683
container_end_page 12725
container_issue 38
container_start_page 12715
container_title Industrial & engineering chemistry research
container_volume 57
creator Song, Yuying
Grabow, Lars C
description The diesel oxidation catalyst (DOC) is an essential component of modern vehicle emissions control systems. The pervasive challenge for low temperature oxidation of engine exhaust gas is the mutual inhibition between the various pollutants, causing a marked increase in light-off temperature. Using a combination of density functional theory and descriptor-based microkinetic modeling, we have screened catalysts for low temperature co-oxidation of CO and NO with specific emphasis on minimizing inhibition effects. Compared to standard Pt–Pd alloys, we find that coinage metal alloys, i.e., Cu, Ag, and Au with at least one oxophilic constituent, should possess more robust low temperature activity with minimal inhibition. We attribute this remarkable performance to high surface concentrations of oxygen due to the oxophilic component and less competitive adsorption between CO and NO to the exposed coinage metal sites. We believe that these fundamental insights provide valuable design principles for improved low temperature oxidation catalysts.
doi_str_mv 10.1021/acs.iecr.8b01905
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1543618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a157598505</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwM1rMpDw7dmKPVfiUKrJktxzbEa7auLJdoP-eRu3K9IZ77pXeQeiewIIAJU_apIV3Ji5ED0QCv0AzwikUHBi_RDMQQhRcCH6NblJaAwDnjM1QvzTZf_t8wF10o014CBE3OuvNIXuDmxbr0eLPFjehaH-91dmHEeuMV-EHd267c1HnfXT42bvkNvhl61OakCaM1k9wukVXg94kd3e-c9S9vnTNe7Fq3z6a5arQpahyoZ2tZWkotUxq66raVrSSRlJJasLkIAzQWnIuLKt7SukAdcnLvtdVD7oS5Rw9nGZDyl4l47MzXyaMozNZEc7KikwQnCATQ0rRDWoX_VbHgyKgJo_q6FFNHtXZ47HyeKpMyTrs43h84n_8D_G5dgk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Song, Yuying ; Grabow, Lars C</creator><creatorcontrib>Song, Yuying ; Grabow, Lars C ; Univ. of California, Oakland, CA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) ; Univ. of Houston, TX (United States)</creatorcontrib><description>The diesel oxidation catalyst (DOC) is an essential component of modern vehicle emissions control systems. The pervasive challenge for low temperature oxidation of engine exhaust gas is the mutual inhibition between the various pollutants, causing a marked increase in light-off temperature. Using a combination of density functional theory and descriptor-based microkinetic modeling, we have screened catalysts for low temperature co-oxidation of CO and NO with specific emphasis on minimizing inhibition effects. Compared to standard Pt–Pd alloys, we find that coinage metal alloys, i.e., Cu, Ag, and Au with at least one oxophilic constituent, should possess more robust low temperature activity with minimal inhibition. We attribute this remarkable performance to high surface concentrations of oxygen due to the oxophilic component and less competitive adsorption between CO and NO to the exposed coinage metal sites. We believe that these fundamental insights provide valuable design principles for improved low temperature oxidation catalysts.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.8b01905</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>02 PETROLEUM ; Adsorption ; Alloys ; Catalysts ; Engineering ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Metals ; Oxidation</subject><ispartof>Industrial &amp; engineering chemistry research, 2018-09, Vol.57 (38), p.12715-12725</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683</citedby><cites>FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683</cites><orcidid>0000-0002-7766-8856 ; 0000-0002-5906-2121 ; 0000000277668856 ; 0000000259062121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1543618$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yuying</creatorcontrib><creatorcontrib>Grabow, Lars C</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Univ. of Houston, TX (United States)</creatorcontrib><title>Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The diesel oxidation catalyst (DOC) is an essential component of modern vehicle emissions control systems. The pervasive challenge for low temperature oxidation of engine exhaust gas is the mutual inhibition between the various pollutants, causing a marked increase in light-off temperature. Using a combination of density functional theory and descriptor-based microkinetic modeling, we have screened catalysts for low temperature co-oxidation of CO and NO with specific emphasis on minimizing inhibition effects. Compared to standard Pt–Pd alloys, we find that coinage metal alloys, i.e., Cu, Ag, and Au with at least one oxophilic constituent, should possess more robust low temperature activity with minimal inhibition. We attribute this remarkable performance to high surface concentrations of oxygen due to the oxophilic component and less competitive adsorption between CO and NO to the exposed coinage metal sites. We believe that these fundamental insights provide valuable design principles for improved low temperature oxidation catalysts.</description><subject>02 PETROLEUM</subject><subject>Adsorption</subject><subject>Alloys</subject><subject>Catalysts</subject><subject>Engineering</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Metals</subject><subject>Oxidation</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwM1rMpDw7dmKPVfiUKrJktxzbEa7auLJdoP-eRu3K9IZ77pXeQeiewIIAJU_apIV3Ji5ED0QCv0AzwikUHBi_RDMQQhRcCH6NblJaAwDnjM1QvzTZf_t8wF10o014CBE3OuvNIXuDmxbr0eLPFjehaH-91dmHEeuMV-EHd267c1HnfXT42bvkNvhl61OakCaM1k9wukVXg94kd3e-c9S9vnTNe7Fq3z6a5arQpahyoZ2tZWkotUxq66raVrSSRlJJasLkIAzQWnIuLKt7SukAdcnLvtdVD7oS5Rw9nGZDyl4l47MzXyaMozNZEc7KikwQnCATQ0rRDWoX_VbHgyKgJo_q6FFNHtXZ47HyeKpMyTrs43h84n_8D_G5dgk</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Song, Yuying</creator><creator>Grabow, Lars C</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7766-8856</orcidid><orcidid>https://orcid.org/0000-0002-5906-2121</orcidid><orcidid>https://orcid.org/0000000277668856</orcidid><orcidid>https://orcid.org/0000000259062121</orcidid></search><sort><creationdate>20180926</creationdate><title>Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions</title><author>Song, Yuying ; Grabow, Lars C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>02 PETROLEUM</topic><topic>Adsorption</topic><topic>Alloys</topic><topic>Catalysts</topic><topic>Engineering</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Metals</topic><topic>Oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yuying</creatorcontrib><creatorcontrib>Grabow, Lars C</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Univ. of Houston, TX (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yuying</au><au>Grabow, Lars C</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><aucorp>Univ. of Houston, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2018-09-26</date><risdate>2018</risdate><volume>57</volume><issue>38</issue><spage>12715</spage><epage>12725</epage><pages>12715-12725</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The diesel oxidation catalyst (DOC) is an essential component of modern vehicle emissions control systems. The pervasive challenge for low temperature oxidation of engine exhaust gas is the mutual inhibition between the various pollutants, causing a marked increase in light-off temperature. Using a combination of density functional theory and descriptor-based microkinetic modeling, we have screened catalysts for low temperature co-oxidation of CO and NO with specific emphasis on minimizing inhibition effects. Compared to standard Pt–Pd alloys, we find that coinage metal alloys, i.e., Cu, Ag, and Au with at least one oxophilic constituent, should possess more robust low temperature activity with minimal inhibition. We attribute this remarkable performance to high surface concentrations of oxygen due to the oxophilic component and less competitive adsorption between CO and NO to the exposed coinage metal sites. We believe that these fundamental insights provide valuable design principles for improved low temperature oxidation catalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.8b01905</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7766-8856</orcidid><orcidid>https://orcid.org/0000-0002-5906-2121</orcidid><orcidid>https://orcid.org/0000000277668856</orcidid><orcidid>https://orcid.org/0000000259062121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2018-09, Vol.57 (38), p.12715-12725
issn 0888-5885
1520-5045
language eng
recordid cdi_osti_scitechconnect_1543618
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects 02 PETROLEUM
Adsorption
Alloys
Catalysts
Engineering
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Metals
Oxidation
title Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity%20Trends%20for%20Catalytic%20CO%20and%20NO%20Co-Oxidation%20at%20Low%20Temperature%20Diesel%20Emission%20Conditions&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Song,%20Yuying&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2018-09-26&rft.volume=57&rft.issue=38&rft.spage=12715&rft.epage=12725&rft.pages=12715-12725&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.8b01905&rft_dat=%3Cacs_osti_%3Ea157598505%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true