Loading…
Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions
The diesel oxidation catalyst (DOC) is an essential component of modern vehicle emissions control systems. The pervasive challenge for low temperature oxidation of engine exhaust gas is the mutual inhibition between the various pollutants, causing a marked increase in light-off temperature. Using a...
Saved in:
Published in: | Industrial & engineering chemistry research 2018-09, Vol.57 (38), p.12715-12725 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683 |
---|---|
cites | cdi_FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683 |
container_end_page | 12725 |
container_issue | 38 |
container_start_page | 12715 |
container_title | Industrial & engineering chemistry research |
container_volume | 57 |
creator | Song, Yuying Grabow, Lars C |
description | The diesel oxidation catalyst (DOC) is an essential component of modern vehicle emissions control systems. The pervasive challenge for low temperature oxidation of engine exhaust gas is the mutual inhibition between the various pollutants, causing a marked increase in light-off temperature. Using a combination of density functional theory and descriptor-based microkinetic modeling, we have screened catalysts for low temperature co-oxidation of CO and NO with specific emphasis on minimizing inhibition effects. Compared to standard Pt–Pd alloys, we find that coinage metal alloys, i.e., Cu, Ag, and Au with at least one oxophilic constituent, should possess more robust low temperature activity with minimal inhibition. We attribute this remarkable performance to high surface concentrations of oxygen due to the oxophilic component and less competitive adsorption between CO and NO to the exposed coinage metal sites. We believe that these fundamental insights provide valuable design principles for improved low temperature oxidation catalysts. |
doi_str_mv | 10.1021/acs.iecr.8b01905 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1543618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a157598505</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwM1rMpDw7dmKPVfiUKrJktxzbEa7auLJdoP-eRu3K9IZ77pXeQeiewIIAJU_apIV3Ji5ED0QCv0AzwikUHBi_RDMQQhRcCH6NblJaAwDnjM1QvzTZf_t8wF10o014CBE3OuvNIXuDmxbr0eLPFjehaH-91dmHEeuMV-EHd267c1HnfXT42bvkNvhl61OakCaM1k9wukVXg94kd3e-c9S9vnTNe7Fq3z6a5arQpahyoZ2tZWkotUxq66raVrSSRlJJasLkIAzQWnIuLKt7SukAdcnLvtdVD7oS5Rw9nGZDyl4l47MzXyaMozNZEc7KikwQnCATQ0rRDWoX_VbHgyKgJo_q6FFNHtXZ47HyeKpMyTrs43h84n_8D_G5dgk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Song, Yuying ; Grabow, Lars C</creator><creatorcontrib>Song, Yuying ; Grabow, Lars C ; Univ. of California, Oakland, CA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) ; Univ. of Houston, TX (United States)</creatorcontrib><description>The diesel oxidation catalyst (DOC) is an essential component of modern vehicle emissions control systems. The pervasive challenge for low temperature oxidation of engine exhaust gas is the mutual inhibition between the various pollutants, causing a marked increase in light-off temperature. Using a combination of density functional theory and descriptor-based microkinetic modeling, we have screened catalysts for low temperature co-oxidation of CO and NO with specific emphasis on minimizing inhibition effects. Compared to standard Pt–Pd alloys, we find that coinage metal alloys, i.e., Cu, Ag, and Au with at least one oxophilic constituent, should possess more robust low temperature activity with minimal inhibition. We attribute this remarkable performance to high surface concentrations of oxygen due to the oxophilic component and less competitive adsorption between CO and NO to the exposed coinage metal sites. We believe that these fundamental insights provide valuable design principles for improved low temperature oxidation catalysts.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.8b01905</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>02 PETROLEUM ; Adsorption ; Alloys ; Catalysts ; Engineering ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Metals ; Oxidation</subject><ispartof>Industrial & engineering chemistry research, 2018-09, Vol.57 (38), p.12715-12725</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683</citedby><cites>FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683</cites><orcidid>0000-0002-7766-8856 ; 0000-0002-5906-2121 ; 0000000277668856 ; 0000000259062121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1543618$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yuying</creatorcontrib><creatorcontrib>Grabow, Lars C</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Univ. of Houston, TX (United States)</creatorcontrib><title>Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The diesel oxidation catalyst (DOC) is an essential component of modern vehicle emissions control systems. The pervasive challenge for low temperature oxidation of engine exhaust gas is the mutual inhibition between the various pollutants, causing a marked increase in light-off temperature. Using a combination of density functional theory and descriptor-based microkinetic modeling, we have screened catalysts for low temperature co-oxidation of CO and NO with specific emphasis on minimizing inhibition effects. Compared to standard Pt–Pd alloys, we find that coinage metal alloys, i.e., Cu, Ag, and Au with at least one oxophilic constituent, should possess more robust low temperature activity with minimal inhibition. We attribute this remarkable performance to high surface concentrations of oxygen due to the oxophilic component and less competitive adsorption between CO and NO to the exposed coinage metal sites. We believe that these fundamental insights provide valuable design principles for improved low temperature oxidation catalysts.</description><subject>02 PETROLEUM</subject><subject>Adsorption</subject><subject>Alloys</subject><subject>Catalysts</subject><subject>Engineering</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Metals</subject><subject>Oxidation</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwM1rMpDw7dmKPVfiUKrJktxzbEa7auLJdoP-eRu3K9IZ77pXeQeiewIIAJU_apIV3Ji5ED0QCv0AzwikUHBi_RDMQQhRcCH6NblJaAwDnjM1QvzTZf_t8wF10o014CBE3OuvNIXuDmxbr0eLPFjehaH-91dmHEeuMV-EHd267c1HnfXT42bvkNvhl61OakCaM1k9wukVXg94kd3e-c9S9vnTNe7Fq3z6a5arQpahyoZ2tZWkotUxq66raVrSSRlJJasLkIAzQWnIuLKt7SukAdcnLvtdVD7oS5Rw9nGZDyl4l47MzXyaMozNZEc7KikwQnCATQ0rRDWoX_VbHgyKgJo_q6FFNHtXZ47HyeKpMyTrs43h84n_8D_G5dgk</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Song, Yuying</creator><creator>Grabow, Lars C</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7766-8856</orcidid><orcidid>https://orcid.org/0000-0002-5906-2121</orcidid><orcidid>https://orcid.org/0000000277668856</orcidid><orcidid>https://orcid.org/0000000259062121</orcidid></search><sort><creationdate>20180926</creationdate><title>Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions</title><author>Song, Yuying ; Grabow, Lars C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>02 PETROLEUM</topic><topic>Adsorption</topic><topic>Alloys</topic><topic>Catalysts</topic><topic>Engineering</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Metals</topic><topic>Oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yuying</creatorcontrib><creatorcontrib>Grabow, Lars C</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Univ. of Houston, TX (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yuying</au><au>Grabow, Lars C</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><aucorp>Univ. of Houston, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2018-09-26</date><risdate>2018</risdate><volume>57</volume><issue>38</issue><spage>12715</spage><epage>12725</epage><pages>12715-12725</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The diesel oxidation catalyst (DOC) is an essential component of modern vehicle emissions control systems. The pervasive challenge for low temperature oxidation of engine exhaust gas is the mutual inhibition between the various pollutants, causing a marked increase in light-off temperature. Using a combination of density functional theory and descriptor-based microkinetic modeling, we have screened catalysts for low temperature co-oxidation of CO and NO with specific emphasis on minimizing inhibition effects. Compared to standard Pt–Pd alloys, we find that coinage metal alloys, i.e., Cu, Ag, and Au with at least one oxophilic constituent, should possess more robust low temperature activity with minimal inhibition. We attribute this remarkable performance to high surface concentrations of oxygen due to the oxophilic component and less competitive adsorption between CO and NO to the exposed coinage metal sites. We believe that these fundamental insights provide valuable design principles for improved low temperature oxidation catalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.8b01905</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7766-8856</orcidid><orcidid>https://orcid.org/0000-0002-5906-2121</orcidid><orcidid>https://orcid.org/0000000277668856</orcidid><orcidid>https://orcid.org/0000000259062121</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2018-09, Vol.57 (38), p.12715-12725 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_osti_scitechconnect_1543618 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | 02 PETROLEUM Adsorption Alloys Catalysts Engineering INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Metals Oxidation |
title | Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity%20Trends%20for%20Catalytic%20CO%20and%20NO%20Co-Oxidation%20at%20Low%20Temperature%20Diesel%20Emission%20Conditions&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Song,%20Yuying&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2018-09-26&rft.volume=57&rft.issue=38&rft.spage=12715&rft.epage=12725&rft.pages=12715-12725&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.8b01905&rft_dat=%3Cacs_osti_%3Ea157598505%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a386t-aed793c22d49ade67d6269c92917149f8c0279558d47b222f07353bba6b0a683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |