Loading…

Manufacturing Oxide Dispersion-Strengthened (ODS) Steel Fuel Cladding Tubes Using the Cold Spray Process

The cold spray materials deposition process has been investigated for manufacturing oxide dispersion-strengthened (ODS) steel fuel cladding tubes. Gas-atomized 14YWT ODS steel powder was used as the feedstock material. A parametric investigation of the cold spray process involving substrate material...

Full description

Saved in:
Bibliographic Details
Published in:JOM (1989) 2019-08, Vol.71 (8), p.2868-2873
Main Authors: Lenling, Mia, Yeom, Hwasung, Maier, Benjamin, Johnson, Greg, Dabney, Tyler, Graham, Jeffrey, Hosemann, Peter, Hoelzer, David, Maloy, Stuart, Sridharan, Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cold spray materials deposition process has been investigated for manufacturing oxide dispersion-strengthened (ODS) steel fuel cladding tubes. Gas-atomized 14YWT ODS steel powder was used as the feedstock material. A parametric investigation of the cold spray process involving substrate materials of various hardnesses, gas preheat temperatures, and carrier gas compositions was performed to achieve the highest quality deposit. The high-velocity impact of the powder on the substrate led to dissolution of discrete oxide nanoparticles, which subsequently reprecipitated during postdeposition annealing at high temperatures. The tubes were manufactured by deposition on an Al-alloy mandrel substrate and subsequent chemical dissolution of the substrate. A 204-mm-long and 1-mm-thick ODS steel cladding tube was successfully manufactured. The grain growth and distribution of oxide nanoparticles in ferritic steel matrix were identified at elevated temperatures. Overall, the cold spray process holds considerable promise for rapid, cost-effective manufacturing of ODS steel cladding tubes.
ISSN:1047-4838
1543-1851
DOI:10.1007/s11837-019-03582-w