Loading…

Local volume effects in the generalized pseudopotential theory

The generalized pseudopotential theory (GPT) is a powerful method for deriving real-space transferable interatomic potentials. Using a coarse-grained electronic structure, one can explicitly calculate the pair ion-ion and multi-ion interactions in simple and transition metals. While successful in de...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2019-06, Vol.99 (21), p.1, Article 214107
Main Authors: Skinner, Guy C. G., Paxton, Anthony T., Moriarty, John A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The generalized pseudopotential theory (GPT) is a powerful method for deriving real-space transferable interatomic potentials. Using a coarse-grained electronic structure, one can explicitly calculate the pair ion-ion and multi-ion interactions in simple and transition metals. While successful in determining bulk properties, in central force metals the GPT fails to describe crystal defects for which there is a significant local volume change. A previous paper [J. A. Moriarty and R. Phillips, Phys. Rev. Lett. 66, 3036 (1991)] found that by allowing the GPT total energy to depend upon some spatially averaged local electron density, the energetics of vacancies and surfaces could be calculated within experimental ranges. In this paper, we develop the formalism further by explicitly calculating the forces and stress tensor associated with this total energy. We call this scheme the adaptive GPT (aGPT) and it is capable of both molecular dynamics (MD) and molecular statics. We apply the aGPT to vacancy formation, divacancy binding, and stacking faults in hcp Mg. We also calculate the local electron density corrections to the bulk elastic constants and phonon dispersion for which there is refinement over the baseline GPT treatment. In addition, we demonstrate aGPT-MD simulation through the calculation of thermal expansion in magnesium to 700 K.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.99.214107