Loading…

Beryllium-10 dating of the Foothills Erratics Train in Alberta, Canada, indicates detachment of the Laurentide Ice Sheet from the Rocky Mountains at ~15 ka

The Foothills Erratics Train consists of large quartzite blocks of Rocky Mountains origin deposited on the eastern slopes of the Rocky Mountain Foothills in Alberta between ~53.5°N and 49°N. The blocks were deposited in their present locations when the western margin of the Laurentide Ice Sheet (LIS...

Full description

Saved in:
Bibliographic Details
Published in:Quaternary research 2019-09, Vol.92 (2), p.469-482
Main Authors: Margold, Martin, Gosse, John C., Hidy, Alan J., Woywitka, Robin J., Young, Joseph M., Froese, Duane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Foothills Erratics Train consists of large quartzite blocks of Rocky Mountains origin deposited on the eastern slopes of the Rocky Mountain Foothills in Alberta between ~53.5°N and 49°N. The blocks were deposited in their present locations when the western margin of the Laurentide Ice Sheet (LIS) detached from the local ice masses of the Rocky Mountains, which initiated the opening of the southern end of the ice-free corridor between the Cordilleran Ice Sheet and the LIS. We use 10Be exposure dating to constrain the beginning of this decoupling. Based on a group of 12 samples well-clustered in time, we date the detachment of the western LIS margin from the Rocky Mountain front to ~14.9 ± 0.9 ka. This is ~1000 years later than previously assumed, but a lack of a latitudinal trend in the ages over a distance of ~500 km is consistent with the rapid opening of a long wedge of unglaciated terrain portrayed in existing ice-retreat reconstructions. A later separation of the western LIS margin from the mountain front implies higher ice margin–retreat rates in order to meet the Younger Dryas ice margin position near the boundary of the Canadian Shield ~2000 years later.
ISSN:0033-5894
1096-0287
DOI:10.1017/qua.2019.10