Loading…
On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition
To identify the critical issues that affect the evolution of microstructure during additive manufacturing, we investigated the influence of process parameters on the evolution of the dimensional and surface quality, microstructure, internal defects, and mechanical properties in 316L stainless steel...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-09, Vol.764 (C), p.138243, Article 138243 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703 |
container_end_page | |
container_issue | C |
container_start_page | 138243 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 764 |
creator | Zheng, B. Haley, J.C. Yang, N. Yee, J. Terrassa, K.W. Zhou, Y. Lavernia, E.J. Schoenung, J.M. |
description | To identify the critical issues that affect the evolution of microstructure during additive manufacturing, we investigated the influence of process parameters on the evolution of the dimensional and surface quality, microstructure, internal defects, and mechanical properties in 316L stainless steel (SS) components fabricated using laser engineered net shaping (LENS®), a directed energy deposition (DED) additive manufacturing (AM) technique. The results show that the accumulation of un-melted powder particles on the side walls of deposited sections can be avoided by selecting a laser under-focused condition. Moreover, we report that the variation of melt pool width is more sensitive to laser power than to the depth of the melt pool. The formation of a so-called “hierarchical” microstructure with cellular morphology is attributable to a combination of layer deposition and rapid solidification, which are characteristics of AM. Finally, we discuss microstructure evolution and defect formation, particularly the formation of multiple interfaces and the presence of un-melted powder particles and pores, in light of the dynamic convective fluid flow and rapid solidification that occur in the melt pool. X-ray computed tomography (X-CT) was used to precisely map the spatial distribution of pores in the DED components. The evolution of microstructure during DED is discussed in the context of related thermal phenomena in an effort to provide fundamental insight into the mechanisms that govern defect formation. |
doi_str_mv | 10.1016/j.msea.2019.138243 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1559510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319310299</els_id><sourcerecordid>2313341775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703</originalsourceid><addsrcrecordid>eNp9UU1rGzEQFaGFuEn-QE6iPa-rWWk_BL0U0yQFgw9Oz0KrHcUytuRKWkP-fbRszz0NM7w38948Qh6BrYFB-_24PifU65qBXAPva8FvyAr6jldC8vYTWTFZQ9UwyW_Jl5SOjDEQrFmRaedpPiDFazhN2QVPg6VnZ2JIOU4mTxGp9iMd0aLJ1ASfYzhR5ymHdkv3-zI6X4JHnxO1eojO6IwjvTpNRxcLpzToMb69lx2XkNx85J58tvqU8OFfvSN_nn69bl6q7e759-bntjKibXJV20HIzmjg2mJfM8HbXoixa4HJ0QoY7CBbUzwL3mNt0EhEMzDLLHai6Ri_I1-XvcWNU8m4jOZQPPiiS0HTyAZm0LcFdInh74Qpq2OYoi-6VM2BcwFd1xRUvaDm16SIVl2iO-v4roCpOQN1VHMGas5ALRkU0o-FhMXk1WGcNaA3uLxGjcH9j_4Bx_qQQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313341775</pqid></control><display><type>article</type><title>On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition</title><source>ScienceDirect Journals</source><creator>Zheng, B. ; Haley, J.C. ; Yang, N. ; Yee, J. ; Terrassa, K.W. ; Zhou, Y. ; Lavernia, E.J. ; Schoenung, J.M.</creator><creatorcontrib>Zheng, B. ; Haley, J.C. ; Yang, N. ; Yee, J. ; Terrassa, K.W. ; Zhou, Y. ; Lavernia, E.J. ; Schoenung, J.M. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>To identify the critical issues that affect the evolution of microstructure during additive manufacturing, we investigated the influence of process parameters on the evolution of the dimensional and surface quality, microstructure, internal defects, and mechanical properties in 316L stainless steel (SS) components fabricated using laser engineered net shaping (LENS®), a directed energy deposition (DED) additive manufacturing (AM) technique. The results show that the accumulation of un-melted powder particles on the side walls of deposited sections can be avoided by selecting a laser under-focused condition. Moreover, we report that the variation of melt pool width is more sensitive to laser power than to the depth of the melt pool. The formation of a so-called “hierarchical” microstructure with cellular morphology is attributable to a combination of layer deposition and rapid solidification, which are characteristics of AM. Finally, we discuss microstructure evolution and defect formation, particularly the formation of multiple interfaces and the presence of un-melted powder particles and pores, in light of the dynamic convective fluid flow and rapid solidification that occur in the melt pool. X-ray computed tomography (X-CT) was used to precisely map the spatial distribution of pores in the DED components. The evolution of microstructure during DED is discussed in the context of related thermal phenomena in an effort to provide fundamental insight into the mechanisms that govern defect formation.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.138243</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>316L SS ; Additive manufacturing ; Austenitic stainless steels ; Computational fluid dynamics ; Computed tomography ; Defects ; Deposition ; Evolution ; Fluid flow ; Lasers ; MATERIALS SCIENCE ; Mechanical properties ; Microstructure ; Morphology ; Process parameters ; Rapid solidification ; Spatial distribution ; Surface properties</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764 (C), p.138243, Article 138243</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 9, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703</citedby><cites>FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1559510$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, B.</creatorcontrib><creatorcontrib>Haley, J.C.</creatorcontrib><creatorcontrib>Yang, N.</creatorcontrib><creatorcontrib>Yee, J.</creatorcontrib><creatorcontrib>Terrassa, K.W.</creatorcontrib><creatorcontrib>Zhou, Y.</creatorcontrib><creatorcontrib>Lavernia, E.J.</creatorcontrib><creatorcontrib>Schoenung, J.M.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>To identify the critical issues that affect the evolution of microstructure during additive manufacturing, we investigated the influence of process parameters on the evolution of the dimensional and surface quality, microstructure, internal defects, and mechanical properties in 316L stainless steel (SS) components fabricated using laser engineered net shaping (LENS®), a directed energy deposition (DED) additive manufacturing (AM) technique. The results show that the accumulation of un-melted powder particles on the side walls of deposited sections can be avoided by selecting a laser under-focused condition. Moreover, we report that the variation of melt pool width is more sensitive to laser power than to the depth of the melt pool. The formation of a so-called “hierarchical” microstructure with cellular morphology is attributable to a combination of layer deposition and rapid solidification, which are characteristics of AM. Finally, we discuss microstructure evolution and defect formation, particularly the formation of multiple interfaces and the presence of un-melted powder particles and pores, in light of the dynamic convective fluid flow and rapid solidification that occur in the melt pool. X-ray computed tomography (X-CT) was used to precisely map the spatial distribution of pores in the DED components. The evolution of microstructure during DED is discussed in the context of related thermal phenomena in an effort to provide fundamental insight into the mechanisms that govern defect formation.</description><subject>316L SS</subject><subject>Additive manufacturing</subject><subject>Austenitic stainless steels</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Defects</subject><subject>Deposition</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Lasers</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Process parameters</subject><subject>Rapid solidification</subject><subject>Spatial distribution</subject><subject>Surface properties</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UU1rGzEQFaGFuEn-QE6iPa-rWWk_BL0U0yQFgw9Oz0KrHcUytuRKWkP-fbRszz0NM7w38948Qh6BrYFB-_24PifU65qBXAPva8FvyAr6jldC8vYTWTFZQ9UwyW_Jl5SOjDEQrFmRaedpPiDFazhN2QVPg6VnZ2JIOU4mTxGp9iMd0aLJ1ASfYzhR5ymHdkv3-zI6X4JHnxO1eojO6IwjvTpNRxcLpzToMb69lx2XkNx85J58tvqU8OFfvSN_nn69bl6q7e759-bntjKibXJV20HIzmjg2mJfM8HbXoixa4HJ0QoY7CBbUzwL3mNt0EhEMzDLLHai6Ri_I1-XvcWNU8m4jOZQPPiiS0HTyAZm0LcFdInh74Qpq2OYoi-6VM2BcwFd1xRUvaDm16SIVl2iO-v4roCpOQN1VHMGas5ALRkU0o-FhMXk1WGcNaA3uLxGjcH9j_4Bx_qQQA</recordid><startdate>20190909</startdate><enddate>20190909</enddate><creator>Zheng, B.</creator><creator>Haley, J.C.</creator><creator>Yang, N.</creator><creator>Yee, J.</creator><creator>Terrassa, K.W.</creator><creator>Zhou, Y.</creator><creator>Lavernia, E.J.</creator><creator>Schoenung, J.M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190909</creationdate><title>On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition</title><author>Zheng, B. ; Haley, J.C. ; Yang, N. ; Yee, J. ; Terrassa, K.W. ; Zhou, Y. ; Lavernia, E.J. ; Schoenung, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>316L SS</topic><topic>Additive manufacturing</topic><topic>Austenitic stainless steels</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Defects</topic><topic>Deposition</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Lasers</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Process parameters</topic><topic>Rapid solidification</topic><topic>Spatial distribution</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, B.</creatorcontrib><creatorcontrib>Haley, J.C.</creatorcontrib><creatorcontrib>Yang, N.</creatorcontrib><creatorcontrib>Yee, J.</creatorcontrib><creatorcontrib>Terrassa, K.W.</creatorcontrib><creatorcontrib>Zhou, Y.</creatorcontrib><creatorcontrib>Lavernia, E.J.</creatorcontrib><creatorcontrib>Schoenung, J.M.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, B.</au><au>Haley, J.C.</au><au>Yang, N.</au><au>Yee, J.</au><au>Terrassa, K.W.</au><au>Zhou, Y.</au><au>Lavernia, E.J.</au><au>Schoenung, J.M.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-09-09</date><risdate>2019</risdate><volume>764</volume><issue>C</issue><spage>138243</spage><pages>138243-</pages><artnum>138243</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>To identify the critical issues that affect the evolution of microstructure during additive manufacturing, we investigated the influence of process parameters on the evolution of the dimensional and surface quality, microstructure, internal defects, and mechanical properties in 316L stainless steel (SS) components fabricated using laser engineered net shaping (LENS®), a directed energy deposition (DED) additive manufacturing (AM) technique. The results show that the accumulation of un-melted powder particles on the side walls of deposited sections can be avoided by selecting a laser under-focused condition. Moreover, we report that the variation of melt pool width is more sensitive to laser power than to the depth of the melt pool. The formation of a so-called “hierarchical” microstructure with cellular morphology is attributable to a combination of layer deposition and rapid solidification, which are characteristics of AM. Finally, we discuss microstructure evolution and defect formation, particularly the formation of multiple interfaces and the presence of un-melted powder particles and pores, in light of the dynamic convective fluid flow and rapid solidification that occur in the melt pool. X-ray computed tomography (X-CT) was used to precisely map the spatial distribution of pores in the DED components. The evolution of microstructure during DED is discussed in the context of related thermal phenomena in an effort to provide fundamental insight into the mechanisms that govern defect formation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.138243</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764 (C), p.138243, Article 138243 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_osti_scitechconnect_1559510 |
source | ScienceDirect Journals |
subjects | 316L SS Additive manufacturing Austenitic stainless steels Computational fluid dynamics Computed tomography Defects Deposition Evolution Fluid flow Lasers MATERIALS SCIENCE Mechanical properties Microstructure Morphology Process parameters Rapid solidification Spatial distribution Surface properties |
title | On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20evolution%20of%20microstructure%20and%20defect%20control%20in%20316L%20SS%20components%20fabricated%20via%20directed%20energy%20deposition&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Zheng,%20B.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2019-09-09&rft.volume=764&rft.issue=C&rft.spage=138243&rft.pages=138243-&rft.artnum=138243&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.138243&rft_dat=%3Cproquest_osti_%3E2313341775%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2313341775&rft_id=info:pmid/&rfr_iscdi=true |