Loading…

On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition

To identify the critical issues that affect the evolution of microstructure during additive manufacturing, we investigated the influence of process parameters on the evolution of the dimensional and surface quality, microstructure, internal defects, and mechanical properties in 316L stainless steel...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-09, Vol.764 (C), p.138243, Article 138243
Main Authors: Zheng, B., Haley, J.C., Yang, N., Yee, J., Terrassa, K.W., Zhou, Y., Lavernia, E.J., Schoenung, J.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703
cites cdi_FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703
container_end_page
container_issue C
container_start_page 138243
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 764
creator Zheng, B.
Haley, J.C.
Yang, N.
Yee, J.
Terrassa, K.W.
Zhou, Y.
Lavernia, E.J.
Schoenung, J.M.
description To identify the critical issues that affect the evolution of microstructure during additive manufacturing, we investigated the influence of process parameters on the evolution of the dimensional and surface quality, microstructure, internal defects, and mechanical properties in 316L stainless steel (SS) components fabricated using laser engineered net shaping (LENS®), a directed energy deposition (DED) additive manufacturing (AM) technique. The results show that the accumulation of un-melted powder particles on the side walls of deposited sections can be avoided by selecting a laser under-focused condition. Moreover, we report that the variation of melt pool width is more sensitive to laser power than to the depth of the melt pool. The formation of a so-called “hierarchical” microstructure with cellular morphology is attributable to a combination of layer deposition and rapid solidification, which are characteristics of AM. Finally, we discuss microstructure evolution and defect formation, particularly the formation of multiple interfaces and the presence of un-melted powder particles and pores, in light of the dynamic convective fluid flow and rapid solidification that occur in the melt pool. X-ray computed tomography (X-CT) was used to precisely map the spatial distribution of pores in the DED components. The evolution of microstructure during DED is discussed in the context of related thermal phenomena in an effort to provide fundamental insight into the mechanisms that govern defect formation.
doi_str_mv 10.1016/j.msea.2019.138243
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1559510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319310299</els_id><sourcerecordid>2313341775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703</originalsourceid><addsrcrecordid>eNp9UU1rGzEQFaGFuEn-QE6iPa-rWWk_BL0U0yQFgw9Oz0KrHcUytuRKWkP-fbRszz0NM7w38948Qh6BrYFB-_24PifU65qBXAPva8FvyAr6jldC8vYTWTFZQ9UwyW_Jl5SOjDEQrFmRaedpPiDFazhN2QVPg6VnZ2JIOU4mTxGp9iMd0aLJ1ASfYzhR5ymHdkv3-zI6X4JHnxO1eojO6IwjvTpNRxcLpzToMb69lx2XkNx85J58tvqU8OFfvSN_nn69bl6q7e759-bntjKibXJV20HIzmjg2mJfM8HbXoixa4HJ0QoY7CBbUzwL3mNt0EhEMzDLLHai6Ri_I1-XvcWNU8m4jOZQPPiiS0HTyAZm0LcFdInh74Qpq2OYoi-6VM2BcwFd1xRUvaDm16SIVl2iO-v4roCpOQN1VHMGas5ALRkU0o-FhMXk1WGcNaA3uLxGjcH9j_4Bx_qQQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313341775</pqid></control><display><type>article</type><title>On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition</title><source>ScienceDirect Journals</source><creator>Zheng, B. ; Haley, J.C. ; Yang, N. ; Yee, J. ; Terrassa, K.W. ; Zhou, Y. ; Lavernia, E.J. ; Schoenung, J.M.</creator><creatorcontrib>Zheng, B. ; Haley, J.C. ; Yang, N. ; Yee, J. ; Terrassa, K.W. ; Zhou, Y. ; Lavernia, E.J. ; Schoenung, J.M. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>To identify the critical issues that affect the evolution of microstructure during additive manufacturing, we investigated the influence of process parameters on the evolution of the dimensional and surface quality, microstructure, internal defects, and mechanical properties in 316L stainless steel (SS) components fabricated using laser engineered net shaping (LENS®), a directed energy deposition (DED) additive manufacturing (AM) technique. The results show that the accumulation of un-melted powder particles on the side walls of deposited sections can be avoided by selecting a laser under-focused condition. Moreover, we report that the variation of melt pool width is more sensitive to laser power than to the depth of the melt pool. The formation of a so-called “hierarchical” microstructure with cellular morphology is attributable to a combination of layer deposition and rapid solidification, which are characteristics of AM. Finally, we discuss microstructure evolution and defect formation, particularly the formation of multiple interfaces and the presence of un-melted powder particles and pores, in light of the dynamic convective fluid flow and rapid solidification that occur in the melt pool. X-ray computed tomography (X-CT) was used to precisely map the spatial distribution of pores in the DED components. The evolution of microstructure during DED is discussed in the context of related thermal phenomena in an effort to provide fundamental insight into the mechanisms that govern defect formation.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.138243</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>316L SS ; Additive manufacturing ; Austenitic stainless steels ; Computational fluid dynamics ; Computed tomography ; Defects ; Deposition ; Evolution ; Fluid flow ; Lasers ; MATERIALS SCIENCE ; Mechanical properties ; Microstructure ; Morphology ; Process parameters ; Rapid solidification ; Spatial distribution ; Surface properties</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764 (C), p.138243, Article 138243</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 9, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703</citedby><cites>FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1559510$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, B.</creatorcontrib><creatorcontrib>Haley, J.C.</creatorcontrib><creatorcontrib>Yang, N.</creatorcontrib><creatorcontrib>Yee, J.</creatorcontrib><creatorcontrib>Terrassa, K.W.</creatorcontrib><creatorcontrib>Zhou, Y.</creatorcontrib><creatorcontrib>Lavernia, E.J.</creatorcontrib><creatorcontrib>Schoenung, J.M.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>To identify the critical issues that affect the evolution of microstructure during additive manufacturing, we investigated the influence of process parameters on the evolution of the dimensional and surface quality, microstructure, internal defects, and mechanical properties in 316L stainless steel (SS) components fabricated using laser engineered net shaping (LENS®), a directed energy deposition (DED) additive manufacturing (AM) technique. The results show that the accumulation of un-melted powder particles on the side walls of deposited sections can be avoided by selecting a laser under-focused condition. Moreover, we report that the variation of melt pool width is more sensitive to laser power than to the depth of the melt pool. The formation of a so-called “hierarchical” microstructure with cellular morphology is attributable to a combination of layer deposition and rapid solidification, which are characteristics of AM. Finally, we discuss microstructure evolution and defect formation, particularly the formation of multiple interfaces and the presence of un-melted powder particles and pores, in light of the dynamic convective fluid flow and rapid solidification that occur in the melt pool. X-ray computed tomography (X-CT) was used to precisely map the spatial distribution of pores in the DED components. The evolution of microstructure during DED is discussed in the context of related thermal phenomena in an effort to provide fundamental insight into the mechanisms that govern defect formation.</description><subject>316L SS</subject><subject>Additive manufacturing</subject><subject>Austenitic stainless steels</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Defects</subject><subject>Deposition</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Lasers</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Process parameters</subject><subject>Rapid solidification</subject><subject>Spatial distribution</subject><subject>Surface properties</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UU1rGzEQFaGFuEn-QE6iPa-rWWk_BL0U0yQFgw9Oz0KrHcUytuRKWkP-fbRszz0NM7w38948Qh6BrYFB-_24PifU65qBXAPva8FvyAr6jldC8vYTWTFZQ9UwyW_Jl5SOjDEQrFmRaedpPiDFazhN2QVPg6VnZ2JIOU4mTxGp9iMd0aLJ1ASfYzhR5ymHdkv3-zI6X4JHnxO1eojO6IwjvTpNRxcLpzToMb69lx2XkNx85J58tvqU8OFfvSN_nn69bl6q7e759-bntjKibXJV20HIzmjg2mJfM8HbXoixa4HJ0QoY7CBbUzwL3mNt0EhEMzDLLHai6Ri_I1-XvcWNU8m4jOZQPPiiS0HTyAZm0LcFdInh74Qpq2OYoi-6VM2BcwFd1xRUvaDm16SIVl2iO-v4roCpOQN1VHMGas5ALRkU0o-FhMXk1WGcNaA3uLxGjcH9j_4Bx_qQQA</recordid><startdate>20190909</startdate><enddate>20190909</enddate><creator>Zheng, B.</creator><creator>Haley, J.C.</creator><creator>Yang, N.</creator><creator>Yee, J.</creator><creator>Terrassa, K.W.</creator><creator>Zhou, Y.</creator><creator>Lavernia, E.J.</creator><creator>Schoenung, J.M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190909</creationdate><title>On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition</title><author>Zheng, B. ; Haley, J.C. ; Yang, N. ; Yee, J. ; Terrassa, K.W. ; Zhou, Y. ; Lavernia, E.J. ; Schoenung, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>316L SS</topic><topic>Additive manufacturing</topic><topic>Austenitic stainless steels</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Defects</topic><topic>Deposition</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Lasers</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Process parameters</topic><topic>Rapid solidification</topic><topic>Spatial distribution</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, B.</creatorcontrib><creatorcontrib>Haley, J.C.</creatorcontrib><creatorcontrib>Yang, N.</creatorcontrib><creatorcontrib>Yee, J.</creatorcontrib><creatorcontrib>Terrassa, K.W.</creatorcontrib><creatorcontrib>Zhou, Y.</creatorcontrib><creatorcontrib>Lavernia, E.J.</creatorcontrib><creatorcontrib>Schoenung, J.M.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, B.</au><au>Haley, J.C.</au><au>Yang, N.</au><au>Yee, J.</au><au>Terrassa, K.W.</au><au>Zhou, Y.</au><au>Lavernia, E.J.</au><au>Schoenung, J.M.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-09-09</date><risdate>2019</risdate><volume>764</volume><issue>C</issue><spage>138243</spage><pages>138243-</pages><artnum>138243</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>To identify the critical issues that affect the evolution of microstructure during additive manufacturing, we investigated the influence of process parameters on the evolution of the dimensional and surface quality, microstructure, internal defects, and mechanical properties in 316L stainless steel (SS) components fabricated using laser engineered net shaping (LENS®), a directed energy deposition (DED) additive manufacturing (AM) technique. The results show that the accumulation of un-melted powder particles on the side walls of deposited sections can be avoided by selecting a laser under-focused condition. Moreover, we report that the variation of melt pool width is more sensitive to laser power than to the depth of the melt pool. The formation of a so-called “hierarchical” microstructure with cellular morphology is attributable to a combination of layer deposition and rapid solidification, which are characteristics of AM. Finally, we discuss microstructure evolution and defect formation, particularly the formation of multiple interfaces and the presence of un-melted powder particles and pores, in light of the dynamic convective fluid flow and rapid solidification that occur in the melt pool. X-ray computed tomography (X-CT) was used to precisely map the spatial distribution of pores in the DED components. The evolution of microstructure during DED is discussed in the context of related thermal phenomena in an effort to provide fundamental insight into the mechanisms that govern defect formation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.138243</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.764 (C), p.138243, Article 138243
issn 0921-5093
1873-4936
language eng
recordid cdi_osti_scitechconnect_1559510
source ScienceDirect Journals
subjects 316L SS
Additive manufacturing
Austenitic stainless steels
Computational fluid dynamics
Computed tomography
Defects
Deposition
Evolution
Fluid flow
Lasers
MATERIALS SCIENCE
Mechanical properties
Microstructure
Morphology
Process parameters
Rapid solidification
Spatial distribution
Surface properties
title On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20evolution%20of%20microstructure%20and%20defect%20control%20in%20316L%20SS%20components%20fabricated%20via%20directed%20energy%20deposition&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Zheng,%20B.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2019-09-09&rft.volume=764&rft.issue=C&rft.spage=138243&rft.pages=138243-&rft.artnum=138243&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.138243&rft_dat=%3Cproquest_osti_%3E2313341775%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2fb497ca13afe820436844d76109df41bfb96c019438e2cec9eecb0f0fe745703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2313341775&rft_id=info:pmid/&rfr_iscdi=true