Loading…
Metal Adsorption Controls Stability of Layered Manganese Oxides
Hexagonal birnessite, a typical layered Mn oxide (LMO), can adsorb and oxidize Mn(II) and thereby transform to Mn(III)-rich hexagonal birnessite, triclinic birnessite, or tunneled Mn oxides (TMOs), remarkably changing the environmental behavior of Mn oxides. We have determined the effects of coexi...
Saved in:
Published in: | Environmental science & technology 2019-07, Vol.53 (13), p.7453-7462 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373 |
---|---|
cites | cdi_FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373 |
container_end_page | 7462 |
container_issue | 13 |
container_start_page | 7453 |
container_title | Environmental science & technology |
container_volume | 53 |
creator | Yang, Peng Post, Jeffrey E Wang, Qian Xu, Wenqian Geiss, Roy McCurdy, Patrick R Zhu, Mengqiang |
description | Hexagonal birnessite, a typical layered Mn oxide (LMO), can adsorb and oxidize Mn(II) and thereby transform to Mn(III)-rich hexagonal birnessite, triclinic birnessite, or tunneled Mn oxides (TMOs), remarkably changing the environmental behavior of Mn oxides. We have determined the effects of coexisting cations on the transformation by incubating Mn(II)-bearing δ-MnO2 at pH 8 under anoxic conditions for 25 d (dissolved Mn < 11 μM). In the Li+, Na+, and K+ chloride solutions, the Mn(II)-bearing δ-MnO2 first transforms to Mn(III)-rich δ-MnO2 or triclinic birnessite (T-bir) due to the Mn(II)–Mn(IV) comproportionation, most of which eventually transform to a 4 × 4 TMO. In contrast, Mn(III)-rich δ-MnO2 and T-bir form and persist in the Mg2+ and Ca2+ chloride solutions. However, in the presence of surface adsorbed Cu(II), Mn(II)-bearing δ-MnO2 turns into Mn(III)-rich δ-MnO2 without forming T-bir or TMOs. The stabilizing power of the cations on the δ-MnO2 structure positively correlates with their binding strength to δ-MnO2 (Li+, Na+, and K+ < Mg2+ and Ca2+ < Cu(II)). Since metal adsorption decreases the surface energy of minerals, our finding suggests that the surface energy largely controls the thermodynamic stability of LMOs. Our study indicates that the adsorption of divalent metal cations, particularly transition metals, can be an important cause of the high abundance of LMOs, rather than the more stable TMO phases, in the environment. |
doi_str_mv | 10.1021/acs.est.9b01242 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1559537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253846930</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373</originalsourceid><addsrcrecordid>eNp10c1LwzAYBvAgipvTszcpehGkWz6arD3JGH7Bxg4qeAtp8k47umYmKbj_3szNHQRPufyeN8n7IHROcJ9gSgZK-z740C9KTGhGD1CXcIpTnnNyiLoYE5YWTLx10In3C4wxZTg_Rh1GCMeU4i66nUJQdTIy3rpVqGyTjG0TnK198hxUWdVVWCd2nkzUGhyYZKqad9WAh2T2VRnwp-hormoPZ7uzh17v717Gj-lk9vA0Hk1SlQkRUkWAGiACDBimBWRGs0LgkpSMFYYPSQmCCzOn5VAxnHFeFDnoHISORLEh66HL7VzrQyW9rgLoD22bBnSQJHr-g663aOXsZxv3IpeV11DX8cW29ZJSxvK4H5JHevWHLmzrmviFqDjLM1EwHNVgq7Sz3juYy5WrlsqtJcFyU4CMBchNeldATFzs5rblEsze_248gpst2CT3d_437hvC5o9c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253846930</pqid></control><display><type>article</type><title>Metal Adsorption Controls Stability of Layered Manganese Oxides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Yang, Peng ; Post, Jeffrey E ; Wang, Qian ; Xu, Wenqian ; Geiss, Roy ; McCurdy, Patrick R ; Zhu, Mengqiang</creator><creatorcontrib>Yang, Peng ; Post, Jeffrey E ; Wang, Qian ; Xu, Wenqian ; Geiss, Roy ; McCurdy, Patrick R ; Zhu, Mengqiang ; Argonne National Lab. (ANL), Argonne, IL (United States) ; Univ. of Wyoming, Laramie, WY (United States)</creatorcontrib><description>Hexagonal birnessite, a typical layered Mn oxide (LMO), can adsorb and oxidize Mn(II) and thereby transform to Mn(III)-rich hexagonal birnessite, triclinic birnessite, or tunneled Mn oxides (TMOs), remarkably changing the environmental behavior of Mn oxides. We have determined the effects of coexisting cations on the transformation by incubating Mn(II)-bearing δ-MnO2 at pH 8 under anoxic conditions for 25 d (dissolved Mn < 11 μM). In the Li+, Na+, and K+ chloride solutions, the Mn(II)-bearing δ-MnO2 first transforms to Mn(III)-rich δ-MnO2 or triclinic birnessite (T-bir) due to the Mn(II)–Mn(IV) comproportionation, most of which eventually transform to a 4 × 4 TMO. In contrast, Mn(III)-rich δ-MnO2 and T-bir form and persist in the Mg2+ and Ca2+ chloride solutions. However, in the presence of surface adsorbed Cu(II), Mn(II)-bearing δ-MnO2 turns into Mn(III)-rich δ-MnO2 without forming T-bir or TMOs. The stabilizing power of the cations on the δ-MnO2 structure positively correlates with their binding strength to δ-MnO2 (Li+, Na+, and K+ < Mg2+ and Ca2+ < Cu(II)). Since metal adsorption decreases the surface energy of minerals, our finding suggests that the surface energy largely controls the thermodynamic stability of LMOs. Our study indicates that the adsorption of divalent metal cations, particularly transition metals, can be an important cause of the high abundance of LMOs, rather than the more stable TMO phases, in the environment.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b01242</identifier><identifier>PMID: 31150220</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Anoxic conditions ; Bearing ; Calcium chloride ; Calcium ions ; Cations ; Control stability ; Copper ; Environmental behavior ; Environmental changes ; GEOSCIENCES ; Heavy metals ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Magnesium ; Manganese ; Manganese dioxide ; Manganese oxides ; Metal ions ; Metals ; Minerals ; Oxides ; Sodium ; Surface chemistry ; Surface energy ; Surface properties ; Surface stability ; Transition metals</subject><ispartof>Environmental science & technology, 2019-07, Vol.53 (13), p.7453-7462</ispartof><rights>Copyright American Chemical Society Jul 2, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373</citedby><cites>FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373</cites><orcidid>0000-0003-1739-1055 ; 0000000317391055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31150220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1559537$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Post, Jeffrey E</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Xu, Wenqian</creatorcontrib><creatorcontrib>Geiss, Roy</creatorcontrib><creatorcontrib>McCurdy, Patrick R</creatorcontrib><creatorcontrib>Zhu, Mengqiang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Wyoming, Laramie, WY (United States)</creatorcontrib><title>Metal Adsorption Controls Stability of Layered Manganese Oxides</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Hexagonal birnessite, a typical layered Mn oxide (LMO), can adsorb and oxidize Mn(II) and thereby transform to Mn(III)-rich hexagonal birnessite, triclinic birnessite, or tunneled Mn oxides (TMOs), remarkably changing the environmental behavior of Mn oxides. We have determined the effects of coexisting cations on the transformation by incubating Mn(II)-bearing δ-MnO2 at pH 8 under anoxic conditions for 25 d (dissolved Mn < 11 μM). In the Li+, Na+, and K+ chloride solutions, the Mn(II)-bearing δ-MnO2 first transforms to Mn(III)-rich δ-MnO2 or triclinic birnessite (T-bir) due to the Mn(II)–Mn(IV) comproportionation, most of which eventually transform to a 4 × 4 TMO. In contrast, Mn(III)-rich δ-MnO2 and T-bir form and persist in the Mg2+ and Ca2+ chloride solutions. However, in the presence of surface adsorbed Cu(II), Mn(II)-bearing δ-MnO2 turns into Mn(III)-rich δ-MnO2 without forming T-bir or TMOs. The stabilizing power of the cations on the δ-MnO2 structure positively correlates with their binding strength to δ-MnO2 (Li+, Na+, and K+ < Mg2+ and Ca2+ < Cu(II)). Since metal adsorption decreases the surface energy of minerals, our finding suggests that the surface energy largely controls the thermodynamic stability of LMOs. Our study indicates that the adsorption of divalent metal cations, particularly transition metals, can be an important cause of the high abundance of LMOs, rather than the more stable TMO phases, in the environment.</description><subject>Adsorption</subject><subject>Anoxic conditions</subject><subject>Bearing</subject><subject>Calcium chloride</subject><subject>Calcium ions</subject><subject>Cations</subject><subject>Control stability</subject><subject>Copper</subject><subject>Environmental behavior</subject><subject>Environmental changes</subject><subject>GEOSCIENCES</subject><subject>Heavy metals</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Manganese dioxide</subject><subject>Manganese oxides</subject><subject>Metal ions</subject><subject>Metals</subject><subject>Minerals</subject><subject>Oxides</subject><subject>Sodium</subject><subject>Surface chemistry</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Surface stability</subject><subject>Transition metals</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10c1LwzAYBvAgipvTszcpehGkWz6arD3JGH7Bxg4qeAtp8k47umYmKbj_3szNHQRPufyeN8n7IHROcJ9gSgZK-z740C9KTGhGD1CXcIpTnnNyiLoYE5YWTLx10In3C4wxZTg_Rh1GCMeU4i66nUJQdTIy3rpVqGyTjG0TnK198hxUWdVVWCd2nkzUGhyYZKqad9WAh2T2VRnwp-hormoPZ7uzh17v717Gj-lk9vA0Hk1SlQkRUkWAGiACDBimBWRGs0LgkpSMFYYPSQmCCzOn5VAxnHFeFDnoHISORLEh66HL7VzrQyW9rgLoD22bBnSQJHr-g663aOXsZxv3IpeV11DX8cW29ZJSxvK4H5JHevWHLmzrmviFqDjLM1EwHNVgq7Sz3juYy5WrlsqtJcFyU4CMBchNeldATFzs5rblEsze_248gpst2CT3d_437hvC5o9c</recordid><startdate>20190702</startdate><enddate>20190702</enddate><creator>Yang, Peng</creator><creator>Post, Jeffrey E</creator><creator>Wang, Qian</creator><creator>Xu, Wenqian</creator><creator>Geiss, Roy</creator><creator>McCurdy, Patrick R</creator><creator>Zhu, Mengqiang</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1739-1055</orcidid><orcidid>https://orcid.org/0000000317391055</orcidid></search><sort><creationdate>20190702</creationdate><title>Metal Adsorption Controls Stability of Layered Manganese Oxides</title><author>Yang, Peng ; Post, Jeffrey E ; Wang, Qian ; Xu, Wenqian ; Geiss, Roy ; McCurdy, Patrick R ; Zhu, Mengqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Anoxic conditions</topic><topic>Bearing</topic><topic>Calcium chloride</topic><topic>Calcium ions</topic><topic>Cations</topic><topic>Control stability</topic><topic>Copper</topic><topic>Environmental behavior</topic><topic>Environmental changes</topic><topic>GEOSCIENCES</topic><topic>Heavy metals</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Manganese dioxide</topic><topic>Manganese oxides</topic><topic>Metal ions</topic><topic>Metals</topic><topic>Minerals</topic><topic>Oxides</topic><topic>Sodium</topic><topic>Surface chemistry</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Surface stability</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Post, Jeffrey E</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Xu, Wenqian</creatorcontrib><creatorcontrib>Geiss, Roy</creatorcontrib><creatorcontrib>McCurdy, Patrick R</creatorcontrib><creatorcontrib>Zhu, Mengqiang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Wyoming, Laramie, WY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Peng</au><au>Post, Jeffrey E</au><au>Wang, Qian</au><au>Xu, Wenqian</au><au>Geiss, Roy</au><au>McCurdy, Patrick R</au><au>Zhu, Mengqiang</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><aucorp>Univ. of Wyoming, Laramie, WY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal Adsorption Controls Stability of Layered Manganese Oxides</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2019-07-02</date><risdate>2019</risdate><volume>53</volume><issue>13</issue><spage>7453</spage><epage>7462</epage><pages>7453-7462</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Hexagonal birnessite, a typical layered Mn oxide (LMO), can adsorb and oxidize Mn(II) and thereby transform to Mn(III)-rich hexagonal birnessite, triclinic birnessite, or tunneled Mn oxides (TMOs), remarkably changing the environmental behavior of Mn oxides. We have determined the effects of coexisting cations on the transformation by incubating Mn(II)-bearing δ-MnO2 at pH 8 under anoxic conditions for 25 d (dissolved Mn < 11 μM). In the Li+, Na+, and K+ chloride solutions, the Mn(II)-bearing δ-MnO2 first transforms to Mn(III)-rich δ-MnO2 or triclinic birnessite (T-bir) due to the Mn(II)–Mn(IV) comproportionation, most of which eventually transform to a 4 × 4 TMO. In contrast, Mn(III)-rich δ-MnO2 and T-bir form and persist in the Mg2+ and Ca2+ chloride solutions. However, in the presence of surface adsorbed Cu(II), Mn(II)-bearing δ-MnO2 turns into Mn(III)-rich δ-MnO2 without forming T-bir or TMOs. The stabilizing power of the cations on the δ-MnO2 structure positively correlates with their binding strength to δ-MnO2 (Li+, Na+, and K+ < Mg2+ and Ca2+ < Cu(II)). Since metal adsorption decreases the surface energy of minerals, our finding suggests that the surface energy largely controls the thermodynamic stability of LMOs. Our study indicates that the adsorption of divalent metal cations, particularly transition metals, can be an important cause of the high abundance of LMOs, rather than the more stable TMO phases, in the environment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31150220</pmid><doi>10.1021/acs.est.9b01242</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1739-1055</orcidid><orcidid>https://orcid.org/0000000317391055</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2019-07, Vol.53 (13), p.7453-7462 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_osti_scitechconnect_1559537 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Adsorption Anoxic conditions Bearing Calcium chloride Calcium ions Cations Control stability Copper Environmental behavior Environmental changes GEOSCIENCES Heavy metals INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Magnesium Manganese Manganese dioxide Manganese oxides Metal ions Metals Minerals Oxides Sodium Surface chemistry Surface energy Surface properties Surface stability Transition metals |
title | Metal Adsorption Controls Stability of Layered Manganese Oxides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20Adsorption%20Controls%20Stability%20of%20Layered%20Manganese%20Oxides&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Yang,%20Peng&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-07-02&rft.volume=53&rft.issue=13&rft.spage=7453&rft.epage=7462&rft.pages=7453-7462&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b01242&rft_dat=%3Cproquest_osti_%3E2253846930%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253846930&rft_id=info:pmid/31150220&rfr_iscdi=true |