Loading…

Metal Adsorption Controls Stability of Layered Manganese Oxides

Hexagonal birnessite, a typical layered Mn oxide (LMO), can adsorb and oxidize Mn­(II) and thereby transform to Mn­(III)-rich hexagonal birnessite, triclinic birnessite, or tunneled Mn oxides (TMOs), remarkably changing the environmental behavior of Mn oxides. We have determined the effects of coexi...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2019-07, Vol.53 (13), p.7453-7462
Main Authors: Yang, Peng, Post, Jeffrey E, Wang, Qian, Xu, Wenqian, Geiss, Roy, McCurdy, Patrick R, Zhu, Mengqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373
cites cdi_FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373
container_end_page 7462
container_issue 13
container_start_page 7453
container_title Environmental science & technology
container_volume 53
creator Yang, Peng
Post, Jeffrey E
Wang, Qian
Xu, Wenqian
Geiss, Roy
McCurdy, Patrick R
Zhu, Mengqiang
description Hexagonal birnessite, a typical layered Mn oxide (LMO), can adsorb and oxidize Mn­(II) and thereby transform to Mn­(III)-rich hexagonal birnessite, triclinic birnessite, or tunneled Mn oxides (TMOs), remarkably changing the environmental behavior of Mn oxides. We have determined the effects of coexisting cations on the transformation by incubating Mn­(II)-bearing δ-MnO2 at pH 8 under anoxic conditions for 25 d (dissolved Mn < 11 μM). In the Li+, Na+, and K+ chloride solutions, the Mn­(II)-bearing δ-MnO2 first transforms to Mn­(III)-rich δ-MnO2 or triclinic birnessite (T-bir) due to the Mn­(II)–Mn­(IV) comproportionation, most of which eventually transform to a 4 × 4 TMO. In contrast, Mn­(III)-rich δ-MnO2 and T-bir form and persist in the Mg2+ and Ca2+ chloride solutions. However, in the presence of surface adsorbed Cu­(II), Mn­(II)-bearing δ-MnO2 turns into Mn­(III)-rich δ-MnO2 without forming T-bir or TMOs. The stabilizing power of the cations on the δ-MnO2 structure positively correlates with their binding strength to δ-MnO2 (Li+, Na+, and K+ < Mg2+ and Ca2+ < Cu­(II)). Since metal adsorption decreases the surface energy of minerals, our finding suggests that the surface energy largely controls the thermodynamic stability of LMOs. Our study indicates that the adsorption of divalent metal cations, particularly transition metals, can be an important cause of the high abundance of LMOs, rather than the more stable TMO phases, in the environment.
doi_str_mv 10.1021/acs.est.9b01242
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1559537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253846930</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373</originalsourceid><addsrcrecordid>eNp10c1LwzAYBvAgipvTszcpehGkWz6arD3JGH7Bxg4qeAtp8k47umYmKbj_3szNHQRPufyeN8n7IHROcJ9gSgZK-z740C9KTGhGD1CXcIpTnnNyiLoYE5YWTLx10In3C4wxZTg_Rh1GCMeU4i66nUJQdTIy3rpVqGyTjG0TnK198hxUWdVVWCd2nkzUGhyYZKqad9WAh2T2VRnwp-hormoPZ7uzh17v717Gj-lk9vA0Hk1SlQkRUkWAGiACDBimBWRGs0LgkpSMFYYPSQmCCzOn5VAxnHFeFDnoHISORLEh66HL7VzrQyW9rgLoD22bBnSQJHr-g663aOXsZxv3IpeV11DX8cW29ZJSxvK4H5JHevWHLmzrmviFqDjLM1EwHNVgq7Sz3juYy5WrlsqtJcFyU4CMBchNeldATFzs5rblEsze_248gpst2CT3d_437hvC5o9c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253846930</pqid></control><display><type>article</type><title>Metal Adsorption Controls Stability of Layered Manganese Oxides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Yang, Peng ; Post, Jeffrey E ; Wang, Qian ; Xu, Wenqian ; Geiss, Roy ; McCurdy, Patrick R ; Zhu, Mengqiang</creator><creatorcontrib>Yang, Peng ; Post, Jeffrey E ; Wang, Qian ; Xu, Wenqian ; Geiss, Roy ; McCurdy, Patrick R ; Zhu, Mengqiang ; Argonne National Lab. (ANL), Argonne, IL (United States) ; Univ. of Wyoming, Laramie, WY (United States)</creatorcontrib><description>Hexagonal birnessite, a typical layered Mn oxide (LMO), can adsorb and oxidize Mn­(II) and thereby transform to Mn­(III)-rich hexagonal birnessite, triclinic birnessite, or tunneled Mn oxides (TMOs), remarkably changing the environmental behavior of Mn oxides. We have determined the effects of coexisting cations on the transformation by incubating Mn­(II)-bearing δ-MnO2 at pH 8 under anoxic conditions for 25 d (dissolved Mn &lt; 11 μM). In the Li+, Na+, and K+ chloride solutions, the Mn­(II)-bearing δ-MnO2 first transforms to Mn­(III)-rich δ-MnO2 or triclinic birnessite (T-bir) due to the Mn­(II)–Mn­(IV) comproportionation, most of which eventually transform to a 4 × 4 TMO. In contrast, Mn­(III)-rich δ-MnO2 and T-bir form and persist in the Mg2+ and Ca2+ chloride solutions. However, in the presence of surface adsorbed Cu­(II), Mn­(II)-bearing δ-MnO2 turns into Mn­(III)-rich δ-MnO2 without forming T-bir or TMOs. The stabilizing power of the cations on the δ-MnO2 structure positively correlates with their binding strength to δ-MnO2 (Li+, Na+, and K+ &lt; Mg2+ and Ca2+ &lt; Cu­(II)). Since metal adsorption decreases the surface energy of minerals, our finding suggests that the surface energy largely controls the thermodynamic stability of LMOs. Our study indicates that the adsorption of divalent metal cations, particularly transition metals, can be an important cause of the high abundance of LMOs, rather than the more stable TMO phases, in the environment.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b01242</identifier><identifier>PMID: 31150220</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Anoxic conditions ; Bearing ; Calcium chloride ; Calcium ions ; Cations ; Control stability ; Copper ; Environmental behavior ; Environmental changes ; GEOSCIENCES ; Heavy metals ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Magnesium ; Manganese ; Manganese dioxide ; Manganese oxides ; Metal ions ; Metals ; Minerals ; Oxides ; Sodium ; Surface chemistry ; Surface energy ; Surface properties ; Surface stability ; Transition metals</subject><ispartof>Environmental science &amp; technology, 2019-07, Vol.53 (13), p.7453-7462</ispartof><rights>Copyright American Chemical Society Jul 2, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373</citedby><cites>FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373</cites><orcidid>0000-0003-1739-1055 ; 0000000317391055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31150220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1559537$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Post, Jeffrey E</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Xu, Wenqian</creatorcontrib><creatorcontrib>Geiss, Roy</creatorcontrib><creatorcontrib>McCurdy, Patrick R</creatorcontrib><creatorcontrib>Zhu, Mengqiang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Wyoming, Laramie, WY (United States)</creatorcontrib><title>Metal Adsorption Controls Stability of Layered Manganese Oxides</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Hexagonal birnessite, a typical layered Mn oxide (LMO), can adsorb and oxidize Mn­(II) and thereby transform to Mn­(III)-rich hexagonal birnessite, triclinic birnessite, or tunneled Mn oxides (TMOs), remarkably changing the environmental behavior of Mn oxides. We have determined the effects of coexisting cations on the transformation by incubating Mn­(II)-bearing δ-MnO2 at pH 8 under anoxic conditions for 25 d (dissolved Mn &lt; 11 μM). In the Li+, Na+, and K+ chloride solutions, the Mn­(II)-bearing δ-MnO2 first transforms to Mn­(III)-rich δ-MnO2 or triclinic birnessite (T-bir) due to the Mn­(II)–Mn­(IV) comproportionation, most of which eventually transform to a 4 × 4 TMO. In contrast, Mn­(III)-rich δ-MnO2 and T-bir form and persist in the Mg2+ and Ca2+ chloride solutions. However, in the presence of surface adsorbed Cu­(II), Mn­(II)-bearing δ-MnO2 turns into Mn­(III)-rich δ-MnO2 without forming T-bir or TMOs. The stabilizing power of the cations on the δ-MnO2 structure positively correlates with their binding strength to δ-MnO2 (Li+, Na+, and K+ &lt; Mg2+ and Ca2+ &lt; Cu­(II)). Since metal adsorption decreases the surface energy of minerals, our finding suggests that the surface energy largely controls the thermodynamic stability of LMOs. Our study indicates that the adsorption of divalent metal cations, particularly transition metals, can be an important cause of the high abundance of LMOs, rather than the more stable TMO phases, in the environment.</description><subject>Adsorption</subject><subject>Anoxic conditions</subject><subject>Bearing</subject><subject>Calcium chloride</subject><subject>Calcium ions</subject><subject>Cations</subject><subject>Control stability</subject><subject>Copper</subject><subject>Environmental behavior</subject><subject>Environmental changes</subject><subject>GEOSCIENCES</subject><subject>Heavy metals</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Manganese dioxide</subject><subject>Manganese oxides</subject><subject>Metal ions</subject><subject>Metals</subject><subject>Minerals</subject><subject>Oxides</subject><subject>Sodium</subject><subject>Surface chemistry</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Surface stability</subject><subject>Transition metals</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10c1LwzAYBvAgipvTszcpehGkWz6arD3JGH7Bxg4qeAtp8k47umYmKbj_3szNHQRPufyeN8n7IHROcJ9gSgZK-z740C9KTGhGD1CXcIpTnnNyiLoYE5YWTLx10In3C4wxZTg_Rh1GCMeU4i66nUJQdTIy3rpVqGyTjG0TnK198hxUWdVVWCd2nkzUGhyYZKqad9WAh2T2VRnwp-hormoPZ7uzh17v717Gj-lk9vA0Hk1SlQkRUkWAGiACDBimBWRGs0LgkpSMFYYPSQmCCzOn5VAxnHFeFDnoHISORLEh66HL7VzrQyW9rgLoD22bBnSQJHr-g663aOXsZxv3IpeV11DX8cW29ZJSxvK4H5JHevWHLmzrmviFqDjLM1EwHNVgq7Sz3juYy5WrlsqtJcFyU4CMBchNeldATFzs5rblEsze_248gpst2CT3d_437hvC5o9c</recordid><startdate>20190702</startdate><enddate>20190702</enddate><creator>Yang, Peng</creator><creator>Post, Jeffrey E</creator><creator>Wang, Qian</creator><creator>Xu, Wenqian</creator><creator>Geiss, Roy</creator><creator>McCurdy, Patrick R</creator><creator>Zhu, Mengqiang</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1739-1055</orcidid><orcidid>https://orcid.org/0000000317391055</orcidid></search><sort><creationdate>20190702</creationdate><title>Metal Adsorption Controls Stability of Layered Manganese Oxides</title><author>Yang, Peng ; Post, Jeffrey E ; Wang, Qian ; Xu, Wenqian ; Geiss, Roy ; McCurdy, Patrick R ; Zhu, Mengqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Anoxic conditions</topic><topic>Bearing</topic><topic>Calcium chloride</topic><topic>Calcium ions</topic><topic>Cations</topic><topic>Control stability</topic><topic>Copper</topic><topic>Environmental behavior</topic><topic>Environmental changes</topic><topic>GEOSCIENCES</topic><topic>Heavy metals</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Manganese dioxide</topic><topic>Manganese oxides</topic><topic>Metal ions</topic><topic>Metals</topic><topic>Minerals</topic><topic>Oxides</topic><topic>Sodium</topic><topic>Surface chemistry</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Surface stability</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Post, Jeffrey E</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Xu, Wenqian</creatorcontrib><creatorcontrib>Geiss, Roy</creatorcontrib><creatorcontrib>McCurdy, Patrick R</creatorcontrib><creatorcontrib>Zhu, Mengqiang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Wyoming, Laramie, WY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Peng</au><au>Post, Jeffrey E</au><au>Wang, Qian</au><au>Xu, Wenqian</au><au>Geiss, Roy</au><au>McCurdy, Patrick R</au><au>Zhu, Mengqiang</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><aucorp>Univ. of Wyoming, Laramie, WY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal Adsorption Controls Stability of Layered Manganese Oxides</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2019-07-02</date><risdate>2019</risdate><volume>53</volume><issue>13</issue><spage>7453</spage><epage>7462</epage><pages>7453-7462</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Hexagonal birnessite, a typical layered Mn oxide (LMO), can adsorb and oxidize Mn­(II) and thereby transform to Mn­(III)-rich hexagonal birnessite, triclinic birnessite, or tunneled Mn oxides (TMOs), remarkably changing the environmental behavior of Mn oxides. We have determined the effects of coexisting cations on the transformation by incubating Mn­(II)-bearing δ-MnO2 at pH 8 under anoxic conditions for 25 d (dissolved Mn &lt; 11 μM). In the Li+, Na+, and K+ chloride solutions, the Mn­(II)-bearing δ-MnO2 first transforms to Mn­(III)-rich δ-MnO2 or triclinic birnessite (T-bir) due to the Mn­(II)–Mn­(IV) comproportionation, most of which eventually transform to a 4 × 4 TMO. In contrast, Mn­(III)-rich δ-MnO2 and T-bir form and persist in the Mg2+ and Ca2+ chloride solutions. However, in the presence of surface adsorbed Cu­(II), Mn­(II)-bearing δ-MnO2 turns into Mn­(III)-rich δ-MnO2 without forming T-bir or TMOs. The stabilizing power of the cations on the δ-MnO2 structure positively correlates with their binding strength to δ-MnO2 (Li+, Na+, and K+ &lt; Mg2+ and Ca2+ &lt; Cu­(II)). Since metal adsorption decreases the surface energy of minerals, our finding suggests that the surface energy largely controls the thermodynamic stability of LMOs. Our study indicates that the adsorption of divalent metal cations, particularly transition metals, can be an important cause of the high abundance of LMOs, rather than the more stable TMO phases, in the environment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31150220</pmid><doi>10.1021/acs.est.9b01242</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1739-1055</orcidid><orcidid>https://orcid.org/0000000317391055</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2019-07, Vol.53 (13), p.7453-7462
issn 0013-936X
1520-5851
language eng
recordid cdi_osti_scitechconnect_1559537
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Adsorption
Anoxic conditions
Bearing
Calcium chloride
Calcium ions
Cations
Control stability
Copper
Environmental behavior
Environmental changes
GEOSCIENCES
Heavy metals
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Magnesium
Manganese
Manganese dioxide
Manganese oxides
Metal ions
Metals
Minerals
Oxides
Sodium
Surface chemistry
Surface energy
Surface properties
Surface stability
Transition metals
title Metal Adsorption Controls Stability of Layered Manganese Oxides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20Adsorption%20Controls%20Stability%20of%20Layered%20Manganese%20Oxides&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Yang,%20Peng&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-07-02&rft.volume=53&rft.issue=13&rft.spage=7453&rft.epage=7462&rft.pages=7453-7462&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b01242&rft_dat=%3Cproquest_osti_%3E2253846930%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a466t-a1e2de16eded3c6e4dc3960b1b339d571be656df2b7a30455998ec8e6cb1ba373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253846930&rft_id=info:pmid/31150220&rfr_iscdi=true