Loading…

Large tetragonality and room temperature ferroelectricity in compressively strained CaTiO3 thin films

Ferroelectricity and piezoelectricity are desirable for a variety of high-temperature applications such as actuators and sensors in heat engines, high-temperature manufacturing, and space technologies; however, the material candidates are currently limited. Here, we demonstrate that CaTiO3, the prot...

Full description

Saved in:
Bibliographic Details
Published in:APL materials 2019-05, Vol.7 (5), p.051104-051104-7
Main Authors: Haislmaier, Ryan C., Lu, Yanfu, Lapano, Jason, Zhou, Hua, Alem, Nasim, Sinnott, Susan B., Engel-Herbert, Roman, Gopalan, Venkatraman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-3e66bd129b856e0aae50c00bd2f7386a0300da2ec70cd6071577acdc279da79c3
cites cdi_FETCH-LOGICAL-c427t-3e66bd129b856e0aae50c00bd2f7386a0300da2ec70cd6071577acdc279da79c3
container_end_page 051104-7
container_issue 5
container_start_page 051104
container_title APL materials
container_volume 7
creator Haislmaier, Ryan C.
Lu, Yanfu
Lapano, Jason
Zhou, Hua
Alem, Nasim
Sinnott, Susan B.
Engel-Herbert, Roman
Gopalan, Venkatraman
description Ferroelectricity and piezoelectricity are desirable for a variety of high-temperature applications such as actuators and sensors in heat engines, high-temperature manufacturing, and space technologies; however, the material candidates are currently limited. Here, we demonstrate that CaTiO3, the prototype perovskite mineral, abundantly found in the Earth, which as a nonpolar material in bulk form, becomes a high-temperature ferroelectric oxide under compressive strain when grown as a thin film. A strain-phase-temperature diagram of CaTiO3 films is created by growing films on various substrates with different in plane strains in order to map out the polar behavior for compressive and tensile strain. Using temperature dependent optical second harmonic generation analysis, we show that tensile strained films exhibit predominantly in-plane polarization with orthorhombiclike point group symmetry with a phase transition below room temperature. On the other hand, compressively strained CaTiO3 films exhibit a near-tetragonal unit cell with a c/a ratio of 1.03, larger than that of classic ferroelectric, e.g., BaTiO3 (c/a ∼ 1.01). These films exhibit a robust and switchable out-of-plane polarization at room temperature, with a ferroelectric transition temperature up to ∼800 K. Density functional theory calculations reveal that compressive strain gives rise to a large out-of-plane displacement of Ti-cations inside the TiO6 octahedral cages and is the major contributor to the calculated polarization of ∼9 µC/cm2. Given that nearly half of the perovskites exhibit the bulk symmetry of CaTiO3, compressive strain tuning of this perovskite family may prove to be a fertile ground for the discovery of strain-induced piezoelectrics and ferroelectrics at high-temperatures.
doi_str_mv 10.1063/1.5090798
format article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1560045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8c960b066f7e4d16bc75130f4c82c992</doaj_id><sourcerecordid>apm</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-3e66bd129b856e0aae50c00bd2f7386a0300da2ec70cd6071577acdc279da79c3</originalsourceid><addsrcrecordid>eNp9kVFLHDEQxxepoKgPfoOlbxVOJ8ltsnksR6vCgS8WfAuzk9kzsrs5klS4b989T6xQ6NMMw4_fMPOvqksB1wK0uhHXDVgwtj2qTqXQetEo-fTlU39SXeT8AgAClGqtPq14jWnDdeGScBMnHELZ1Tj5OsU4zuNxywnL78R1zylFHphKCrSnwlRTHLeJcw6vPOzqPDvCxL5e4WN4UHV5npE-DGM-r457HDJfvNez6tfPH4-ru8X64fZ-9X29oKU0ZaFY684Labu20QyI3AABdF72RrUaQQF4lEwGyGswojEGyZM01qOxpM6q-4PXR3xx2xRGTDsXMbi3QUwbh6kEGti1ZDV0oHVveOmF7sg0QkG_pFaStXJ2fT24Yi7B5flkpmeK0zR_wIlGAyybGfp2gCjFnBP3H0sFuH0mTrj3TGb26sDuXVhCnD7g15j-gm7r-__B_5r_AItMm1k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large tetragonality and room temperature ferroelectricity in compressively strained CaTiO3 thin films</title><source>AIP Open Access Journals</source><creator>Haislmaier, Ryan C. ; Lu, Yanfu ; Lapano, Jason ; Zhou, Hua ; Alem, Nasim ; Sinnott, Susan B. ; Engel-Herbert, Roman ; Gopalan, Venkatraman</creator><creatorcontrib>Haislmaier, Ryan C. ; Lu, Yanfu ; Lapano, Jason ; Zhou, Hua ; Alem, Nasim ; Sinnott, Susan B. ; Engel-Herbert, Roman ; Gopalan, Venkatraman ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Ferroelectricity and piezoelectricity are desirable for a variety of high-temperature applications such as actuators and sensors in heat engines, high-temperature manufacturing, and space technologies; however, the material candidates are currently limited. Here, we demonstrate that CaTiO3, the prototype perovskite mineral, abundantly found in the Earth, which as a nonpolar material in bulk form, becomes a high-temperature ferroelectric oxide under compressive strain when grown as a thin film. A strain-phase-temperature diagram of CaTiO3 films is created by growing films on various substrates with different in plane strains in order to map out the polar behavior for compressive and tensile strain. Using temperature dependent optical second harmonic generation analysis, we show that tensile strained films exhibit predominantly in-plane polarization with orthorhombiclike point group symmetry with a phase transition below room temperature. On the other hand, compressively strained CaTiO3 films exhibit a near-tetragonal unit cell with a c/a ratio of 1.03, larger than that of classic ferroelectric, e.g., BaTiO3 (c/a ∼ 1.01). These films exhibit a robust and switchable out-of-plane polarization at room temperature, with a ferroelectric transition temperature up to ∼800 K. Density functional theory calculations reveal that compressive strain gives rise to a large out-of-plane displacement of Ti-cations inside the TiO6 octahedral cages and is the major contributor to the calculated polarization of ∼9 µC/cm2. Given that nearly half of the perovskites exhibit the bulk symmetry of CaTiO3, compressive strain tuning of this perovskite family may prove to be a fertile ground for the discovery of strain-induced piezoelectrics and ferroelectrics at high-temperatures.</description><identifier>ISSN: 2166-532X</identifier><identifier>EISSN: 2166-532X</identifier><identifier>DOI: 10.1063/1.5090798</identifier><identifier>CODEN: AMPADS</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>CaTiO3 ; Ferroelectric ; Hybrid molecular beam epitaxy ; MATERIALS SCIENCE ; Piezoresponse force microscopy ; Second harmonic generation ; Strain engineering ; Thin film</subject><ispartof>APL materials, 2019-05, Vol.7 (5), p.051104-051104-7</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-3e66bd129b856e0aae50c00bd2f7386a0300da2ec70cd6071577acdc279da79c3</citedby><cites>FETCH-LOGICAL-c427t-3e66bd129b856e0aae50c00bd2f7386a0300da2ec70cd6071577acdc279da79c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apm/article-lookup/doi/10.1063/1.5090798$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27869,27903,27904,76154</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1560045$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Haislmaier, Ryan C.</creatorcontrib><creatorcontrib>Lu, Yanfu</creatorcontrib><creatorcontrib>Lapano, Jason</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Alem, Nasim</creatorcontrib><creatorcontrib>Sinnott, Susan B.</creatorcontrib><creatorcontrib>Engel-Herbert, Roman</creatorcontrib><creatorcontrib>Gopalan, Venkatraman</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Large tetragonality and room temperature ferroelectricity in compressively strained CaTiO3 thin films</title><title>APL materials</title><description>Ferroelectricity and piezoelectricity are desirable for a variety of high-temperature applications such as actuators and sensors in heat engines, high-temperature manufacturing, and space technologies; however, the material candidates are currently limited. Here, we demonstrate that CaTiO3, the prototype perovskite mineral, abundantly found in the Earth, which as a nonpolar material in bulk form, becomes a high-temperature ferroelectric oxide under compressive strain when grown as a thin film. A strain-phase-temperature diagram of CaTiO3 films is created by growing films on various substrates with different in plane strains in order to map out the polar behavior for compressive and tensile strain. Using temperature dependent optical second harmonic generation analysis, we show that tensile strained films exhibit predominantly in-plane polarization with orthorhombiclike point group symmetry with a phase transition below room temperature. On the other hand, compressively strained CaTiO3 films exhibit a near-tetragonal unit cell with a c/a ratio of 1.03, larger than that of classic ferroelectric, e.g., BaTiO3 (c/a ∼ 1.01). These films exhibit a robust and switchable out-of-plane polarization at room temperature, with a ferroelectric transition temperature up to ∼800 K. Density functional theory calculations reveal that compressive strain gives rise to a large out-of-plane displacement of Ti-cations inside the TiO6 octahedral cages and is the major contributor to the calculated polarization of ∼9 µC/cm2. Given that nearly half of the perovskites exhibit the bulk symmetry of CaTiO3, compressive strain tuning of this perovskite family may prove to be a fertile ground for the discovery of strain-induced piezoelectrics and ferroelectrics at high-temperatures.</description><subject>CaTiO3</subject><subject>Ferroelectric</subject><subject>Hybrid molecular beam epitaxy</subject><subject>MATERIALS SCIENCE</subject><subject>Piezoresponse force microscopy</subject><subject>Second harmonic generation</subject><subject>Strain engineering</subject><subject>Thin film</subject><issn>2166-532X</issn><issn>2166-532X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kVFLHDEQxxepoKgPfoOlbxVOJ8ltsnksR6vCgS8WfAuzk9kzsrs5klS4b989T6xQ6NMMw4_fMPOvqksB1wK0uhHXDVgwtj2qTqXQetEo-fTlU39SXeT8AgAClGqtPq14jWnDdeGScBMnHELZ1Tj5OsU4zuNxywnL78R1zylFHphKCrSnwlRTHLeJcw6vPOzqPDvCxL5e4WN4UHV5npE-DGM-r457HDJfvNez6tfPH4-ru8X64fZ-9X29oKU0ZaFY684Labu20QyI3AABdF72RrUaQQF4lEwGyGswojEGyZM01qOxpM6q-4PXR3xx2xRGTDsXMbi3QUwbh6kEGti1ZDV0oHVveOmF7sg0QkG_pFaStXJ2fT24Yi7B5flkpmeK0zR_wIlGAyybGfp2gCjFnBP3H0sFuH0mTrj3TGb26sDuXVhCnD7g15j-gm7r-__B_5r_AItMm1k</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Haislmaier, Ryan C.</creator><creator>Lu, Yanfu</creator><creator>Lapano, Jason</creator><creator>Zhou, Hua</creator><creator>Alem, Nasim</creator><creator>Sinnott, Susan B.</creator><creator>Engel-Herbert, Roman</creator><creator>Gopalan, Venkatraman</creator><general>American Institute of Physics (AIP)</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20190501</creationdate><title>Large tetragonality and room temperature ferroelectricity in compressively strained CaTiO3 thin films</title><author>Haislmaier, Ryan C. ; Lu, Yanfu ; Lapano, Jason ; Zhou, Hua ; Alem, Nasim ; Sinnott, Susan B. ; Engel-Herbert, Roman ; Gopalan, Venkatraman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-3e66bd129b856e0aae50c00bd2f7386a0300da2ec70cd6071577acdc279da79c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CaTiO3</topic><topic>Ferroelectric</topic><topic>Hybrid molecular beam epitaxy</topic><topic>MATERIALS SCIENCE</topic><topic>Piezoresponse force microscopy</topic><topic>Second harmonic generation</topic><topic>Strain engineering</topic><topic>Thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haislmaier, Ryan C.</creatorcontrib><creatorcontrib>Lu, Yanfu</creatorcontrib><creatorcontrib>Lapano, Jason</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Alem, Nasim</creatorcontrib><creatorcontrib>Sinnott, Susan B.</creatorcontrib><creatorcontrib>Engel-Herbert, Roman</creatorcontrib><creatorcontrib>Gopalan, Venkatraman</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haislmaier, Ryan C.</au><au>Lu, Yanfu</au><au>Lapano, Jason</au><au>Zhou, Hua</au><au>Alem, Nasim</au><au>Sinnott, Susan B.</au><au>Engel-Herbert, Roman</au><au>Gopalan, Venkatraman</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large tetragonality and room temperature ferroelectricity in compressively strained CaTiO3 thin films</atitle><jtitle>APL materials</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>7</volume><issue>5</issue><spage>051104</spage><epage>051104-7</epage><pages>051104-051104-7</pages><issn>2166-532X</issn><eissn>2166-532X</eissn><coden>AMPADS</coden><abstract>Ferroelectricity and piezoelectricity are desirable for a variety of high-temperature applications such as actuators and sensors in heat engines, high-temperature manufacturing, and space technologies; however, the material candidates are currently limited. Here, we demonstrate that CaTiO3, the prototype perovskite mineral, abundantly found in the Earth, which as a nonpolar material in bulk form, becomes a high-temperature ferroelectric oxide under compressive strain when grown as a thin film. A strain-phase-temperature diagram of CaTiO3 films is created by growing films on various substrates with different in plane strains in order to map out the polar behavior for compressive and tensile strain. Using temperature dependent optical second harmonic generation analysis, we show that tensile strained films exhibit predominantly in-plane polarization with orthorhombiclike point group symmetry with a phase transition below room temperature. On the other hand, compressively strained CaTiO3 films exhibit a near-tetragonal unit cell with a c/a ratio of 1.03, larger than that of classic ferroelectric, e.g., BaTiO3 (c/a ∼ 1.01). These films exhibit a robust and switchable out-of-plane polarization at room temperature, with a ferroelectric transition temperature up to ∼800 K. Density functional theory calculations reveal that compressive strain gives rise to a large out-of-plane displacement of Ti-cations inside the TiO6 octahedral cages and is the major contributor to the calculated polarization of ∼9 µC/cm2. Given that nearly half of the perovskites exhibit the bulk symmetry of CaTiO3, compressive strain tuning of this perovskite family may prove to be a fertile ground for the discovery of strain-induced piezoelectrics and ferroelectrics at high-temperatures.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><doi>10.1063/1.5090798</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2166-532X
ispartof APL materials, 2019-05, Vol.7 (5), p.051104-051104-7
issn 2166-532X
2166-532X
language eng
recordid cdi_osti_scitechconnect_1560045
source AIP Open Access Journals
subjects CaTiO3
Ferroelectric
Hybrid molecular beam epitaxy
MATERIALS SCIENCE
Piezoresponse force microscopy
Second harmonic generation
Strain engineering
Thin film
title Large tetragonality and room temperature ferroelectricity in compressively strained CaTiO3 thin films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20tetragonality%20and%20room%20temperature%20ferroelectricity%20in%20compressively%20strained%20CaTiO3%20thin%20films&rft.jtitle=APL%20materials&rft.au=Haislmaier,%20Ryan%20C.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-05-01&rft.volume=7&rft.issue=5&rft.spage=051104&rft.epage=051104-7&rft.pages=051104-051104-7&rft.issn=2166-532X&rft.eissn=2166-532X&rft.coden=AMPADS&rft_id=info:doi/10.1063/1.5090798&rft_dat=%3Cscitation_osti_%3Eapm%3C/scitation_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-3e66bd129b856e0aae50c00bd2f7386a0300da2ec70cd6071577acdc279da79c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true