Loading…

Lu-Hf isotopic evidence of a deep mantle plume source for the ∼2.06 Ga Bushveld Large Igneous Province

The Bushveld Large Igneous Province (B-LIP) comprises a diverse array of >30 magma bodies that intruded the Kaapvaal Craton at ∼2.06 Ga. In this paper we use zircon and bulk-rock Lu-Hf isotope data to determine whether the B-LIP formed in response to the arrival of a plume(s) from the deep mantle...

Full description

Saved in:
Bibliographic Details
Published in:Lithos 2019-12, Vol.348-349 (C), p.105168, Article 105168
Main Authors: Zirakparvar, N. Alex, Mathez, E.A., Rajesh, H.M., Choe, Saebyul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Bushveld Large Igneous Province (B-LIP) comprises a diverse array of >30 magma bodies that intruded the Kaapvaal Craton at ∼2.06 Ga. In this paper we use zircon and bulk-rock Lu-Hf isotope data to determine whether the B-LIP formed in response to the arrival of a plume(s) from the deep mantle or by melting of the depleted upper mantle during foundering of an eclogitized residue at the base of the lithosphere. New zircon Hf isotope compositions for four B-LIP bodies yield intrusion-specific average εHf(2.06Ga) values that range from −20.7 ± 2.8 to −2.7 ± 2.8, largely consistent with literature zircon data for other B-LIP intrusions. Bulk-rock solution εHf(2.06Ga) values for a variety of B-LIP intrusions range from −2.1 ± 0.2 to −10.6 ± 0.2. Because the most radiogenic Hf isotope compositions across the entire B-LIP are nearly primordial, having an εHf(2.06Ga) close to 0, it is likely that the heat source of the B-LIP was a plume(s) from deep mantle. The Hf isotope data further suggests that individual intrusions in the B-LIP were produced by melting of three distinct source reservoirs (in addition to melts derived from the plume itself): 1) Subduction and plume modified continental lithospheric mantle; 2) Older (∼2.7 Ga) mafic-ultramafic plume-related material trapped in the Kaapvaal lithosphere; and 3) Mid- to upper Kaapvaal crust. The presence of ∼2.7 Ga mafic-ultramafic material in the Kaapvaal lithosphere may have acted to strengthen the lithosphere so that it was able to resist being dispersed by the arrival of the B-LIP plume at ∼2.06 Ga. •Lu-Hf data (bulk-rock & zircon) are presented for the Bushveld Large Igneous Province.•Data suggest the province was deep mantle plume sourced.•Province-wide unradiogenic Hf signatures likely reflect the source composition.
ISSN:0024-4937
1872-6143
DOI:10.1016/j.lithos.2019.105168