Loading…
A parallel hierarchical blocked adaptive cross approximation algorithm
This article presents a low-rank decomposition algorithm based on subsampling of matrix entries. The proposed algorithm first computes rank-revealing decompositions of submatrices with a blocked adaptive cross approximation (BACA) algorithm, and then applies a hierarchical merge operation via trunca...
Saved in:
Published in: | The international journal of high performance computing applications 2020-07, Vol.34 (4), p.394-408 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents a low-rank decomposition algorithm based on subsampling of matrix entries. The proposed algorithm first computes rank-revealing decompositions of submatrices with a blocked adaptive cross approximation (BACA) algorithm, and then applies a hierarchical merge operation via truncated singular value decompositions (H-BACA). The proposed algorithm significantly improves the convergence of the baseline ACA algorithm and achieves reduced computational complexity compared to the traditional decompositions such as rank-revealing QR. Numerical results demonstrate the efficiency, accuracy, and parallel scalability of the proposed algorithm. |
---|---|
ISSN: | 1094-3420 1741-2846 |
DOI: | 10.1177/1094342020918305 |