Loading…

Boron Nitride Nanoribbons Become Metallic

Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2011-08, Vol.11 (8), p.3267-3273
Main Authors: Lopez-Bezanilla, Alejandro, Huang, Jingsong, Terrones, Humberto, Sumpter, Bobby G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73
cites cdi_FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73
container_end_page 3273
container_issue 8
container_start_page 3267
container_title Nano letters
container_volume 11
creator Lopez-Bezanilla, Alejandro
Huang, Jingsong
Terrones, Humberto
Sumpter, Bobby G
description Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on the N edge due to the partial filling of the band derived from the p z orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons. We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.
doi_str_mv 10.1021/nl201616h
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1564752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762051939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73</originalsourceid><addsrcrecordid>eNp90U1LAzEQBuAgih_Vg39AiiDqoTqTZDfZoxW_oOpFzyGbzWLKNqnJ9uC_N9JaPYinmcPDO_AOIYcIFwgUL31HAUss3zbILhYMRmVV0c31LvkO2UtpCgAVK2Cb7FAUrGQcd8n5OMTgh0-uj66xwyftQ3R1HXwajq0JMzt8tL3uOmf2yVaru2QPVnNAXm9vXq7vR5Pnu4frq8lIc-D9qKCcyxqBaRQtcGSS1cKAxaauZSOFlo2VeS9bAbUoK9SNpS21rMqEasEG5HiZG1LvVDKut-bNBO-t6RUWJRcFzeh0ieYxvC9s6tXMJWO7TnsbFklJyQAErTDLs38lipJCgRWrMj1fUhNDStG2ah7dTMcPhaC-ilbrorM9WsUu6plt1vK72QxOVkAno7s2am9c-nGcY37SL6dNUtOwiD6X-8fBT2FxjkI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762051939</pqid></control><display><type>article</type><title>Boron Nitride Nanoribbons Become Metallic</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lopez-Bezanilla, Alejandro ; Huang, Jingsong ; Terrones, Humberto ; Sumpter, Bobby G</creator><creatorcontrib>Lopez-Bezanilla, Alejandro ; Huang, Jingsong ; Terrones, Humberto ; Sumpter, Bobby G ; UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><description>Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on the N edge due to the partial filling of the band derived from the p z orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons. We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl201616h</identifier><identifier>PMID: 21736341</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Boron nitride ; Chemistry ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Dimerization ; Electron states ; Electronic structure ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Fermi level ; Ground state ; Magnetic properties ; Magnetic properties and materials ; Magnetic properties of nanostructures ; Materials Science ; Methods of electronic structure calculations ; Nanostructure ; Orbitals ; Physics ; Ribbons ; Science &amp; Technology - Other Topics</subject><ispartof>Nano letters, 2011-08, Vol.11 (8), p.3267-3273</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73</citedby><cites>FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24419921$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21736341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1564752$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez-Bezanilla, Alejandro</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Terrones, Humberto</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><title>Boron Nitride Nanoribbons Become Metallic</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on the N edge due to the partial filling of the band derived from the p z orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons. We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.</description><subject>Boron nitride</subject><subject>Chemistry</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Dimerization</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Fermi level</subject><subject>Ground state</subject><subject>Magnetic properties</subject><subject>Magnetic properties and materials</subject><subject>Magnetic properties of nanostructures</subject><subject>Materials Science</subject><subject>Methods of electronic structure calculations</subject><subject>Nanostructure</subject><subject>Orbitals</subject><subject>Physics</subject><subject>Ribbons</subject><subject>Science &amp; Technology - Other Topics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90U1LAzEQBuAgih_Vg39AiiDqoTqTZDfZoxW_oOpFzyGbzWLKNqnJ9uC_N9JaPYinmcPDO_AOIYcIFwgUL31HAUss3zbILhYMRmVV0c31LvkO2UtpCgAVK2Cb7FAUrGQcd8n5OMTgh0-uj66xwyftQ3R1HXwajq0JMzt8tL3uOmf2yVaru2QPVnNAXm9vXq7vR5Pnu4frq8lIc-D9qKCcyxqBaRQtcGSS1cKAxaauZSOFlo2VeS9bAbUoK9SNpS21rMqEasEG5HiZG1LvVDKut-bNBO-t6RUWJRcFzeh0ieYxvC9s6tXMJWO7TnsbFklJyQAErTDLs38lipJCgRWrMj1fUhNDStG2ah7dTMcPhaC-ilbrorM9WsUu6plt1vK72QxOVkAno7s2am9c-nGcY37SL6dNUtOwiD6X-8fBT2FxjkI</recordid><startdate>20110810</startdate><enddate>20110810</enddate><creator>Lopez-Bezanilla, Alejandro</creator><creator>Huang, Jingsong</creator><creator>Terrones, Humberto</creator><creator>Sumpter, Bobby G</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110810</creationdate><title>Boron Nitride Nanoribbons Become Metallic</title><author>Lopez-Bezanilla, Alejandro ; Huang, Jingsong ; Terrones, Humberto ; Sumpter, Bobby G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boron nitride</topic><topic>Chemistry</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Dimerization</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Fermi level</topic><topic>Ground state</topic><topic>Magnetic properties</topic><topic>Magnetic properties and materials</topic><topic>Magnetic properties of nanostructures</topic><topic>Materials Science</topic><topic>Methods of electronic structure calculations</topic><topic>Nanostructure</topic><topic>Orbitals</topic><topic>Physics</topic><topic>Ribbons</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Bezanilla, Alejandro</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Terrones, Humberto</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Bezanilla, Alejandro</au><au>Huang, Jingsong</au><au>Terrones, Humberto</au><au>Sumpter, Bobby G</au><aucorp>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron Nitride Nanoribbons Become Metallic</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-08-10</date><risdate>2011</risdate><volume>11</volume><issue>8</issue><spage>3267</spage><epage>3273</epage><pages>3267-3273</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on the N edge due to the partial filling of the band derived from the p z orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons. We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21736341</pmid><doi>10.1021/nl201616h</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2011-08, Vol.11 (8), p.3267-3273
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1564752
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Boron nitride
Chemistry
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Dimerization
Electron states
Electronic structure
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals
Exact sciences and technology
Fermi level
Ground state
Magnetic properties
Magnetic properties and materials
Magnetic properties of nanostructures
Materials Science
Methods of electronic structure calculations
Nanostructure
Orbitals
Physics
Ribbons
Science & Technology - Other Topics
title Boron Nitride Nanoribbons Become Metallic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%20Nitride%20Nanoribbons%20Become%20Metallic&rft.jtitle=Nano%20letters&rft.au=Lopez-Bezanilla,%20Alejandro&rft.aucorp=UT-Battelle%20LLC/ORNL,%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2011-08-10&rft.volume=11&rft.issue=8&rft.spage=3267&rft.epage=3273&rft.pages=3267-3273&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl201616h&rft_dat=%3Cproquest_osti_%3E1762051939%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762051939&rft_id=info:pmid/21736341&rfr_iscdi=true