Loading…
Boron Nitride Nanoribbons Become Metallic
Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated...
Saved in:
Published in: | Nano letters 2011-08, Vol.11 (8), p.3267-3273 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73 |
---|---|
cites | cdi_FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73 |
container_end_page | 3273 |
container_issue | 8 |
container_start_page | 3267 |
container_title | Nano letters |
container_volume | 11 |
creator | Lopez-Bezanilla, Alejandro Huang, Jingsong Terrones, Humberto Sumpter, Bobby G |
description | Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on the N edge due to the partial filling of the band derived from the p z orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons. We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials. |
doi_str_mv | 10.1021/nl201616h |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1564752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762051939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73</originalsourceid><addsrcrecordid>eNp90U1LAzEQBuAgih_Vg39AiiDqoTqTZDfZoxW_oOpFzyGbzWLKNqnJ9uC_N9JaPYinmcPDO_AOIYcIFwgUL31HAUss3zbILhYMRmVV0c31LvkO2UtpCgAVK2Cb7FAUrGQcd8n5OMTgh0-uj66xwyftQ3R1HXwajq0JMzt8tL3uOmf2yVaru2QPVnNAXm9vXq7vR5Pnu4frq8lIc-D9qKCcyxqBaRQtcGSS1cKAxaauZSOFlo2VeS9bAbUoK9SNpS21rMqEasEG5HiZG1LvVDKut-bNBO-t6RUWJRcFzeh0ieYxvC9s6tXMJWO7TnsbFklJyQAErTDLs38lipJCgRWrMj1fUhNDStG2ah7dTMcPhaC-ilbrorM9WsUu6plt1vK72QxOVkAno7s2am9c-nGcY37SL6dNUtOwiD6X-8fBT2FxjkI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762051939</pqid></control><display><type>article</type><title>Boron Nitride Nanoribbons Become Metallic</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lopez-Bezanilla, Alejandro ; Huang, Jingsong ; Terrones, Humberto ; Sumpter, Bobby G</creator><creatorcontrib>Lopez-Bezanilla, Alejandro ; Huang, Jingsong ; Terrones, Humberto ; Sumpter, Bobby G ; UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><description>Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on the N edge due to the partial filling of the band derived from the p z orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons. We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl201616h</identifier><identifier>PMID: 21736341</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Boron nitride ; Chemistry ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Dimerization ; Electron states ; Electronic structure ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Fermi level ; Ground state ; Magnetic properties ; Magnetic properties and materials ; Magnetic properties of nanostructures ; Materials Science ; Methods of electronic structure calculations ; Nanostructure ; Orbitals ; Physics ; Ribbons ; Science & Technology - Other Topics</subject><ispartof>Nano letters, 2011-08, Vol.11 (8), p.3267-3273</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73</citedby><cites>FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24419921$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21736341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1564752$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez-Bezanilla, Alejandro</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Terrones, Humberto</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><title>Boron Nitride Nanoribbons Become Metallic</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on the N edge due to the partial filling of the band derived from the p z orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons. We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.</description><subject>Boron nitride</subject><subject>Chemistry</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Dimerization</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Fermi level</subject><subject>Ground state</subject><subject>Magnetic properties</subject><subject>Magnetic properties and materials</subject><subject>Magnetic properties of nanostructures</subject><subject>Materials Science</subject><subject>Methods of electronic structure calculations</subject><subject>Nanostructure</subject><subject>Orbitals</subject><subject>Physics</subject><subject>Ribbons</subject><subject>Science & Technology - Other Topics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90U1LAzEQBuAgih_Vg39AiiDqoTqTZDfZoxW_oOpFzyGbzWLKNqnJ9uC_N9JaPYinmcPDO_AOIYcIFwgUL31HAUss3zbILhYMRmVV0c31LvkO2UtpCgAVK2Cb7FAUrGQcd8n5OMTgh0-uj66xwyftQ3R1HXwajq0JMzt8tL3uOmf2yVaru2QPVnNAXm9vXq7vR5Pnu4frq8lIc-D9qKCcyxqBaRQtcGSS1cKAxaauZSOFlo2VeS9bAbUoK9SNpS21rMqEasEG5HiZG1LvVDKut-bNBO-t6RUWJRcFzeh0ieYxvC9s6tXMJWO7TnsbFklJyQAErTDLs38lipJCgRWrMj1fUhNDStG2ah7dTMcPhaC-ilbrorM9WsUu6plt1vK72QxOVkAno7s2am9c-nGcY37SL6dNUtOwiD6X-8fBT2FxjkI</recordid><startdate>20110810</startdate><enddate>20110810</enddate><creator>Lopez-Bezanilla, Alejandro</creator><creator>Huang, Jingsong</creator><creator>Terrones, Humberto</creator><creator>Sumpter, Bobby G</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110810</creationdate><title>Boron Nitride Nanoribbons Become Metallic</title><author>Lopez-Bezanilla, Alejandro ; Huang, Jingsong ; Terrones, Humberto ; Sumpter, Bobby G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boron nitride</topic><topic>Chemistry</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Dimerization</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Fermi level</topic><topic>Ground state</topic><topic>Magnetic properties</topic><topic>Magnetic properties and materials</topic><topic>Magnetic properties of nanostructures</topic><topic>Materials Science</topic><topic>Methods of electronic structure calculations</topic><topic>Nanostructure</topic><topic>Orbitals</topic><topic>Physics</topic><topic>Ribbons</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Bezanilla, Alejandro</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Terrones, Humberto</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Bezanilla, Alejandro</au><au>Huang, Jingsong</au><au>Terrones, Humberto</au><au>Sumpter, Bobby G</au><aucorp>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron Nitride Nanoribbons Become Metallic</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-08-10</date><risdate>2011</risdate><volume>11</volume><issue>8</issue><spage>3267</spage><epage>3273</epage><pages>3267-3273</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on the N edge due to the partial filling of the band derived from the p z orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons. We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21736341</pmid><doi>10.1021/nl201616h</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2011-08, Vol.11 (8), p.3267-3273 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1564752 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Boron nitride Chemistry Condensed matter: electronic structure, electrical, magnetic, and optical properties Dimerization Electron states Electronic structure Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals Exact sciences and technology Fermi level Ground state Magnetic properties Magnetic properties and materials Magnetic properties of nanostructures Materials Science Methods of electronic structure calculations Nanostructure Orbitals Physics Ribbons Science & Technology - Other Topics |
title | Boron Nitride Nanoribbons Become Metallic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%20Nitride%20Nanoribbons%20Become%20Metallic&rft.jtitle=Nano%20letters&rft.au=Lopez-Bezanilla,%20Alejandro&rft.aucorp=UT-Battelle%20LLC/ORNL,%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2011-08-10&rft.volume=11&rft.issue=8&rft.spage=3267&rft.epage=3273&rft.pages=3267-3273&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl201616h&rft_dat=%3Cproquest_osti_%3E1762051939%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a404t-52448b103a17f041383b7c0e1dbb8d87a8de8dbb6f70b7691ade2f2e39e1d2a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762051939&rft_id=info:pmid/21736341&rfr_iscdi=true |