Loading…
Direct Assessment of Nanoconfined Water in 2D Ti3C2 Electrode Interspaces by a Surface Acoustic Technique
Although significant progress has been achieved in understanding of ion-exchange mechanisms in the new family of 2D transition metal carbides and nitrides known as MXenes, direct gravimetric assessment of water insertion into the MXene interlayer spaces and mesopores has not been reported so far. Co...
Saved in:
Published in: | Journal of the American Chemical Society 2018-07, Vol.140 (28), p.8910-8917 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although significant progress has been achieved in understanding of ion-exchange mechanisms in the new family of 2D transition metal carbides and nitrides known as MXenes, direct gravimetric assessment of water insertion into the MXene interlayer spaces and mesopores has not been reported so far. Concurrently, the latest research on MXene and Birnessite electrodes shows that nanoconfined water dramatically improves their gravimetric capacity and rate capability. Hence, quantification of the amount of confined water in solvated electrodes is becoming an important goal of energy-related research. Using the recently developed and highly sensitive method of in situ hydrodynamic spectroscopy (based on surface-acoustic probing of solvated interfaces), we provide clear evidence that typical cosmotropic cations (Li+, Mg2+, and Al3+) are inserted into the MXene interspaces in their partially hydrated form, in contrast to the insertion of chaotropic cations (Cs+ and TEA+), which effectively dehydrate the MXene. These new findings provide important information about the charge-storage mechanisms in layered materials by direct quantification and efficient control (management) over the amount of confined fluid in a variety of solvated battery/supercapacitor electrodes. We believe that the proposed monitoring of water content as a function of the nature of ions can be equally applied to solvated biointerfaces, such as the ion channels of membrane proteins. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.8b04862 |