Loading…

Incorporating Heavy Alkanes in Metal–Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity

Metal-Organic Frameworks (MOFs) as methane adsorbents are highly promising materials for applications such as methane-powered vehicles, flare gas capture, and field natural gas separation. Pre- and post-synthetic modification of MOFs have been known to help improve both the overall methane uptake as...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2018-09, Vol.24 (64)
Main Authors: Fang, Yu, Banerjee, Sayan, Joseph, Elizabeth A., Day, Gregory S., Bosch, Mathieu, Li, Jialuo, Wang, Qi, Drake, Hannah, Ozdemir, Osman K., Ornstein, Jason M., Wang, Ye, Lu, Tong‐Bu, Zhou, Hong‐Cai
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 64
container_start_page
container_title Chemistry : a European journal
container_volume 24
creator Fang, Yu
Banerjee, Sayan
Joseph, Elizabeth A.
Day, Gregory S.
Bosch, Mathieu
Li, Jialuo
Wang, Qi
Drake, Hannah
Ozdemir, Osman K.
Ornstein, Jason M.
Wang, Ye
Lu, Tong‐Bu
Zhou, Hong‐Cai
description Metal-Organic Frameworks (MOFs) as methane adsorbents are highly promising materials for applications such as methane-powered vehicles, flare gas capture, and field natural gas separation. Pre- and post-synthetic modification of MOFs have been known to help improve both the overall methane uptake as well as the working capacity. Herein, we introduce a post-synthetic modification strategy to non-covalently modify MOF adsorbents for the enhancement of the natural gas uptake for the MOF material. In our study, we doped PCN-250 adsorbents with C10 alkane and C14 fatty acid, investigating their impact on the methane uptake capabilities. We found that even trace amount of heavy hydrocarbons can considerably enhance the raw methane uptake of the MOF while still being regenerable. The doped hydrocarbons are presumably located at the mesoporous defects of PCN-250, thus optimizing the framework-methane interactions. Finally, these findings reveal a general approach which can be used to modify the MOF absorbents, improving their ability to be sustainable and renewable natural gas adsorption platforms.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1566407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566407</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15664073</originalsourceid><addsrcrecordid>eNqNyzFuwjAUgGGrAqkBeocn9kgOJo4yIlQKA7CwRw_jpG6CHfmZIpi4AzfkJIDEAZj-5fs_WJSkoyQWmUw7LOL5OItlKvJP1iP645znUoiIlQurnG-dx2BsBXON_yeYNDVaTWAsLHXA5na5rn2F1iiYedzro_M1Qek8rNtg9ub8XCc7cn6rd7DCcPDYwA8STLFFZcJpwLolNqS_Xu2z4ex7M53HjoIp6EG0-lXOWq1CkaRSjnkm3kJ3_NJJWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Incorporating Heavy Alkanes in Metal–Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fang, Yu ; Banerjee, Sayan ; Joseph, Elizabeth A. ; Day, Gregory S. ; Bosch, Mathieu ; Li, Jialuo ; Wang, Qi ; Drake, Hannah ; Ozdemir, Osman K. ; Ornstein, Jason M. ; Wang, Ye ; Lu, Tong‐Bu ; Zhou, Hong‐Cai</creator><creatorcontrib>Fang, Yu ; Banerjee, Sayan ; Joseph, Elizabeth A. ; Day, Gregory S. ; Bosch, Mathieu ; Li, Jialuo ; Wang, Qi ; Drake, Hannah ; Ozdemir, Osman K. ; Ornstein, Jason M. ; Wang, Ye ; Lu, Tong‐Bu ; Zhou, Hong‐Cai ; Energy Frontier Research Centers, Washington D.C. (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS) ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>Metal-Organic Frameworks (MOFs) as methane adsorbents are highly promising materials for applications such as methane-powered vehicles, flare gas capture, and field natural gas separation. Pre- and post-synthetic modification of MOFs have been known to help improve both the overall methane uptake as well as the working capacity. Herein, we introduce a post-synthetic modification strategy to non-covalently modify MOF adsorbents for the enhancement of the natural gas uptake for the MOF material. In our study, we doped PCN-250 adsorbents with C10 alkane and C14 fatty acid, investigating their impact on the methane uptake capabilities. We found that even trace amount of heavy hydrocarbons can considerably enhance the raw methane uptake of the MOF while still being regenerable. The doped hydrocarbons are presumably located at the mesoporous defects of PCN-250, thus optimizing the framework-methane interactions. Finally, these findings reveal a general approach which can be used to modify the MOF absorbents, improving their ability to be sustainable and renewable natural gas adsorption platforms.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><language>eng</language><publisher>United States: ChemPubSoc Europe</publisher><subject>carbon capture ; high pressure ; hydrocarbon ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; materials and chemistry by design ; membrane ; mesoporous ; metal-organic framework ; methane storage ; synthesis (novel materials) ; synthesis (scalable processing) ; synthesis (self-assembly)</subject><ispartof>Chemistry : a European journal, 2018-09, Vol.24 (64)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000290293788 ; 0000000169114047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1566407$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Yu</creatorcontrib><creatorcontrib>Banerjee, Sayan</creatorcontrib><creatorcontrib>Joseph, Elizabeth A.</creatorcontrib><creatorcontrib>Day, Gregory S.</creatorcontrib><creatorcontrib>Bosch, Mathieu</creatorcontrib><creatorcontrib>Li, Jialuo</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Drake, Hannah</creatorcontrib><creatorcontrib>Ozdemir, Osman K.</creatorcontrib><creatorcontrib>Ornstein, Jason M.</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Lu, Tong‐Bu</creatorcontrib><creatorcontrib>Zhou, Hong‐Cai</creatorcontrib><creatorcontrib>Energy Frontier Research Centers, Washington D.C. (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Incorporating Heavy Alkanes in Metal–Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity</title><title>Chemistry : a European journal</title><description>Metal-Organic Frameworks (MOFs) as methane adsorbents are highly promising materials for applications such as methane-powered vehicles, flare gas capture, and field natural gas separation. Pre- and post-synthetic modification of MOFs have been known to help improve both the overall methane uptake as well as the working capacity. Herein, we introduce a post-synthetic modification strategy to non-covalently modify MOF adsorbents for the enhancement of the natural gas uptake for the MOF material. In our study, we doped PCN-250 adsorbents with C10 alkane and C14 fatty acid, investigating their impact on the methane uptake capabilities. We found that even trace amount of heavy hydrocarbons can considerably enhance the raw methane uptake of the MOF while still being regenerable. The doped hydrocarbons are presumably located at the mesoporous defects of PCN-250, thus optimizing the framework-methane interactions. Finally, these findings reveal a general approach which can be used to modify the MOF absorbents, improving their ability to be sustainable and renewable natural gas adsorption platforms.</description><subject>carbon capture</subject><subject>high pressure</subject><subject>hydrocarbon</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>materials and chemistry by design</subject><subject>membrane</subject><subject>mesoporous</subject><subject>metal-organic framework</subject><subject>methane storage</subject><subject>synthesis (novel materials)</subject><subject>synthesis (scalable processing)</subject><subject>synthesis (self-assembly)</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNyzFuwjAUgGGrAqkBeocn9kgOJo4yIlQKA7CwRw_jpG6CHfmZIpi4AzfkJIDEAZj-5fs_WJSkoyQWmUw7LOL5OItlKvJP1iP645znUoiIlQurnG-dx2BsBXON_yeYNDVaTWAsLHXA5na5rn2F1iiYedzro_M1Qek8rNtg9ub8XCc7cn6rd7DCcPDYwA8STLFFZcJpwLolNqS_Xu2z4ex7M53HjoIp6EG0-lXOWq1CkaRSjnkm3kJ3_NJJWg</recordid><startdate>20180910</startdate><enddate>20180910</enddate><creator>Fang, Yu</creator><creator>Banerjee, Sayan</creator><creator>Joseph, Elizabeth A.</creator><creator>Day, Gregory S.</creator><creator>Bosch, Mathieu</creator><creator>Li, Jialuo</creator><creator>Wang, Qi</creator><creator>Drake, Hannah</creator><creator>Ozdemir, Osman K.</creator><creator>Ornstein, Jason M.</creator><creator>Wang, Ye</creator><creator>Lu, Tong‐Bu</creator><creator>Zhou, Hong‐Cai</creator><general>ChemPubSoc Europe</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000290293788</orcidid><orcidid>https://orcid.org/0000000169114047</orcidid></search><sort><creationdate>20180910</creationdate><title>Incorporating Heavy Alkanes in Metal–Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity</title><author>Fang, Yu ; Banerjee, Sayan ; Joseph, Elizabeth A. ; Day, Gregory S. ; Bosch, Mathieu ; Li, Jialuo ; Wang, Qi ; Drake, Hannah ; Ozdemir, Osman K. ; Ornstein, Jason M. ; Wang, Ye ; Lu, Tong‐Bu ; Zhou, Hong‐Cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15664073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>carbon capture</topic><topic>high pressure</topic><topic>hydrocarbon</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>materials and chemistry by design</topic><topic>membrane</topic><topic>mesoporous</topic><topic>metal-organic framework</topic><topic>methane storage</topic><topic>synthesis (novel materials)</topic><topic>synthesis (scalable processing)</topic><topic>synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yu</creatorcontrib><creatorcontrib>Banerjee, Sayan</creatorcontrib><creatorcontrib>Joseph, Elizabeth A.</creatorcontrib><creatorcontrib>Day, Gregory S.</creatorcontrib><creatorcontrib>Bosch, Mathieu</creatorcontrib><creatorcontrib>Li, Jialuo</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Drake, Hannah</creatorcontrib><creatorcontrib>Ozdemir, Osman K.</creatorcontrib><creatorcontrib>Ornstein, Jason M.</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Lu, Tong‐Bu</creatorcontrib><creatorcontrib>Zhou, Hong‐Cai</creatorcontrib><creatorcontrib>Energy Frontier Research Centers, Washington D.C. (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yu</au><au>Banerjee, Sayan</au><au>Joseph, Elizabeth A.</au><au>Day, Gregory S.</au><au>Bosch, Mathieu</au><au>Li, Jialuo</au><au>Wang, Qi</au><au>Drake, Hannah</au><au>Ozdemir, Osman K.</au><au>Ornstein, Jason M.</au><au>Wang, Ye</au><au>Lu, Tong‐Bu</au><au>Zhou, Hong‐Cai</au><aucorp>Energy Frontier Research Centers, Washington D.C. (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</aucorp><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Heavy Alkanes in Metal–Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity</atitle><jtitle>Chemistry : a European journal</jtitle><date>2018-09-10</date><risdate>2018</risdate><volume>24</volume><issue>64</issue><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Metal-Organic Frameworks (MOFs) as methane adsorbents are highly promising materials for applications such as methane-powered vehicles, flare gas capture, and field natural gas separation. Pre- and post-synthetic modification of MOFs have been known to help improve both the overall methane uptake as well as the working capacity. Herein, we introduce a post-synthetic modification strategy to non-covalently modify MOF adsorbents for the enhancement of the natural gas uptake for the MOF material. In our study, we doped PCN-250 adsorbents with C10 alkane and C14 fatty acid, investigating their impact on the methane uptake capabilities. We found that even trace amount of heavy hydrocarbons can considerably enhance the raw methane uptake of the MOF while still being regenerable. The doped hydrocarbons are presumably located at the mesoporous defects of PCN-250, thus optimizing the framework-methane interactions. Finally, these findings reveal a general approach which can be used to modify the MOF absorbents, improving their ability to be sustainable and renewable natural gas adsorption platforms.</abstract><cop>United States</cop><pub>ChemPubSoc Europe</pub><orcidid>https://orcid.org/0000000290293788</orcidid><orcidid>https://orcid.org/0000000169114047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2018-09, Vol.24 (64)
issn 0947-6539
1521-3765
language eng
recordid cdi_osti_scitechconnect_1566407
source Wiley-Blackwell Read & Publish Collection
subjects carbon capture
high pressure
hydrocarbon
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
materials and chemistry by design
membrane
mesoporous
metal-organic framework
methane storage
synthesis (novel materials)
synthesis (scalable processing)
synthesis (self-assembly)
title Incorporating Heavy Alkanes in Metal–Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Heavy%20Alkanes%20in%20Metal%E2%80%93Organic%20Frameworks%20for%20Optimizing%20Adsorbed%20Natural%20Gas%20Capacity&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Fang,%20Yu&rft.aucorp=Energy%20Frontier%20Research%20Centers,%20Washington%20D.C.%20(EFRC)%20(United%20States).%20Center%20for%20Gas%20Separations%20Relevant%20to%20Clean%20Energy%20Technologies%20(CGS)&rft.date=2018-09-10&rft.volume=24&rft.issue=64&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/&rft_dat=%3Costi%3E1566407%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_15664073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true