Loading…

A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation

Photoanodes in dye-sensitized photoelectrosynthesis cells integrate molecular chromophore/catalyst assemblies on mesoporous n-type metal oxide electrodes for light-driven water oxidation. One limitation for sustainable photoanodes is the stability of chromophore/catalyst assembly on electrode surfac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2018-11, Vol.140 (44), p.15062-15069
Main Authors: Wu, Lei, Eberhart, Michael, Nayak, Animesh, Brennaman, M. Kyle, Shan, Bing, Meyer, Thomas J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3
cites cdi_FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3
container_end_page 15069
container_issue 44
container_start_page 15062
container_title Journal of the American Chemical Society
container_volume 140
creator Wu, Lei
Eberhart, Michael
Nayak, Animesh
Brennaman, M. Kyle
Shan, Bing
Meyer, Thomas J
description Photoanodes in dye-sensitized photoelectrosynthesis cells integrate molecular chromophore/catalyst assemblies on mesoporous n-type metal oxide electrodes for light-driven water oxidation. One limitation for sustainable photoanodes is the stability of chromophore/catalyst assembly on electrode surfaces for long periods. Progress has been made in stabilizing chromophores based on atomic layer deposition, polymer dip coating, C–C cross-coupling by electropolymerization, and silane surface binding, but little progress has been made on catalyst stabilization. We report here the silane-derivatized catalyst, Ru­(bda)­(L)2 (bda = 2,2′-bipyridine-6,6′-dicarboxylate, L = 4-(6-(triethoxysilyl)­hexyl)­pyridine), catalyst 1, which is stabilized on metal oxide electrode surfaces over an extended pH range. A surface stabilization study shows that it maintains its reactivity on the electrode surface toward electrochemical oxidation over a wide range of conditions. Its electrochemical stability on electrode surfaces has been systematically evaluated, and its role as a catalyst for water oxidation has been explored. On surfaces of mesoporous nanostructured core/shell SnO2/TiO2, with a TiO2 stabilized inner layer of the Ru­(II) polypyridyl chromophore, [Ru­(4,4′-(PO3H2)2bpy)­(bpy)2]2+ (RuP 2+ ; bpy = 2,2′-bipyridine), highly efficient photoelectrochemical water oxidation catalysis occurs to produce O2 with a maximum efficiency of ∼1.25 mA/cm2. Long-term loss of catalytic activity occurs with time owing to catalyst loss from the electrode surface by axial ligand dissociation in the high oxidation states of the catalyst.
doi_str_mv 10.1021/jacs.8b10132
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1566591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126902808</sourcerecordid><originalsourceid>FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3</originalsourceid><addsrcrecordid>eNptkEtP4zAURi0EGgrMjvUoYlWkCfjasRMvUedBJVARD3VpOY6jukpjsJ0R5dfjqoXZsLKudL7v-h6ETgFfACZwuVQ6XFQ1YKBkD42AEZwzIHwfjTDGJC8rTg_RUQjLNBakgm_okGJaAuZshOZX2a3rjB465bMH26ne5L-Mt_9UtG-mye6H8XR6nk1UVN06xKx1PrtbuOhMCkXv9MKsrFZdNlfR-Gz2apuUdP0JOmhVF8z33XuMnv78fpxc5zezv9PJ1U2uClHEvOK8boAoUUHbUM2AtsIAKRtaEwLQilZRITDDBW0KLQirCs5VWzNVMoZLTY_R2bbXhWhl0DYavdCu79PvJDDOmYAEjbfQs3cvgwlRrmzQpttc64YgSdIlMKlwldCfW1R7F4I3rXz2dqX8WgKWG99y41vufCf8x655qFem-YQ_BP9fvUkt3eD7ZOPrrneWiYcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126902808</pqid></control><display><type>article</type><title>A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wu, Lei ; Eberhart, Michael ; Nayak, Animesh ; Brennaman, M. Kyle ; Shan, Bing ; Meyer, Thomas J</creator><creatorcontrib>Wu, Lei ; Eberhart, Michael ; Nayak, Animesh ; Brennaman, M. Kyle ; Shan, Bing ; Meyer, Thomas J ; Univ. of North Carolina, Chapel Hill, NC (United States) ; Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</creatorcontrib><description>Photoanodes in dye-sensitized photoelectrosynthesis cells integrate molecular chromophore/catalyst assemblies on mesoporous n-type metal oxide electrodes for light-driven water oxidation. One limitation for sustainable photoanodes is the stability of chromophore/catalyst assembly on electrode surfaces for long periods. Progress has been made in stabilizing chromophores based on atomic layer deposition, polymer dip coating, C–C cross-coupling by electropolymerization, and silane surface binding, but little progress has been made on catalyst stabilization. We report here the silane-derivatized catalyst, Ru­(bda)­(L)2 (bda = 2,2′-bipyridine-6,6′-dicarboxylate, L = 4-(6-(triethoxysilyl)­hexyl)­pyridine), catalyst 1, which is stabilized on metal oxide electrode surfaces over an extended pH range. A surface stabilization study shows that it maintains its reactivity on the electrode surface toward electrochemical oxidation over a wide range of conditions. Its electrochemical stability on electrode surfaces has been systematically evaluated, and its role as a catalyst for water oxidation has been explored. On surfaces of mesoporous nanostructured core/shell SnO2/TiO2, with a TiO2 stabilized inner layer of the Ru­(II) polypyridyl chromophore, [Ru­(4,4′-(PO3H2)2bpy)­(bpy)2]2+ (RuP 2+ ; bpy = 2,2′-bipyridine), highly efficient photoelectrochemical water oxidation catalysis occurs to produce O2 with a maximum efficiency of ∼1.25 mA/cm2. Long-term loss of catalytic activity occurs with time owing to catalyst loss from the electrode surface by axial ligand dissociation in the high oxidation states of the catalyst.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b10132</identifier><identifier>PMID: 30371065</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalysis (heterogeneous) ; catalysis (homogeneous) ; charge transport ; defects ; electrocatalysis ; ENERGY STORAGE ; materials and chemistry by design ; mesostructured materials ; photosynthesis (natural and artificial) ; solar (fuels) ; synthesis (novel materials) ; synthesis (self-assembly)</subject><ispartof>Journal of the American Chemical Society, 2018-11, Vol.140 (44), p.15062-15069</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3</citedby><cites>FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3</cites><orcidid>0000-0002-7006-2608 ; 0000000270062608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30371065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1566591$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Eberhart, Michael</creatorcontrib><creatorcontrib>Nayak, Animesh</creatorcontrib><creatorcontrib>Brennaman, M. Kyle</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Meyer, Thomas J</creatorcontrib><creatorcontrib>Univ. of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</creatorcontrib><title>A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Photoanodes in dye-sensitized photoelectrosynthesis cells integrate molecular chromophore/catalyst assemblies on mesoporous n-type metal oxide electrodes for light-driven water oxidation. One limitation for sustainable photoanodes is the stability of chromophore/catalyst assembly on electrode surfaces for long periods. Progress has been made in stabilizing chromophores based on atomic layer deposition, polymer dip coating, C–C cross-coupling by electropolymerization, and silane surface binding, but little progress has been made on catalyst stabilization. We report here the silane-derivatized catalyst, Ru­(bda)­(L)2 (bda = 2,2′-bipyridine-6,6′-dicarboxylate, L = 4-(6-(triethoxysilyl)­hexyl)­pyridine), catalyst 1, which is stabilized on metal oxide electrode surfaces over an extended pH range. A surface stabilization study shows that it maintains its reactivity on the electrode surface toward electrochemical oxidation over a wide range of conditions. Its electrochemical stability on electrode surfaces has been systematically evaluated, and its role as a catalyst for water oxidation has been explored. On surfaces of mesoporous nanostructured core/shell SnO2/TiO2, with a TiO2 stabilized inner layer of the Ru­(II) polypyridyl chromophore, [Ru­(4,4′-(PO3H2)2bpy)­(bpy)2]2+ (RuP 2+ ; bpy = 2,2′-bipyridine), highly efficient photoelectrochemical water oxidation catalysis occurs to produce O2 with a maximum efficiency of ∼1.25 mA/cm2. Long-term loss of catalytic activity occurs with time owing to catalyst loss from the electrode surface by axial ligand dissociation in the high oxidation states of the catalyst.</description><subject>catalysis (heterogeneous)</subject><subject>catalysis (homogeneous)</subject><subject>charge transport</subject><subject>defects</subject><subject>electrocatalysis</subject><subject>ENERGY STORAGE</subject><subject>materials and chemistry by design</subject><subject>mesostructured materials</subject><subject>photosynthesis (natural and artificial)</subject><subject>solar (fuels)</subject><subject>synthesis (novel materials)</subject><subject>synthesis (self-assembly)</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkEtP4zAURi0EGgrMjvUoYlWkCfjasRMvUedBJVARD3VpOY6jukpjsJ0R5dfjqoXZsLKudL7v-h6ETgFfACZwuVQ6XFQ1YKBkD42AEZwzIHwfjTDGJC8rTg_RUQjLNBakgm_okGJaAuZshOZX2a3rjB465bMH26ne5L-Mt_9UtG-mye6H8XR6nk1UVN06xKx1PrtbuOhMCkXv9MKsrFZdNlfR-Gz2apuUdP0JOmhVF8z33XuMnv78fpxc5zezv9PJ1U2uClHEvOK8boAoUUHbUM2AtsIAKRtaEwLQilZRITDDBW0KLQirCs5VWzNVMoZLTY_R2bbXhWhl0DYavdCu79PvJDDOmYAEjbfQs3cvgwlRrmzQpttc64YgSdIlMKlwldCfW1R7F4I3rXz2dqX8WgKWG99y41vufCf8x655qFem-YQ_BP9fvUkt3eD7ZOPrrneWiYcA</recordid><startdate>20181107</startdate><enddate>20181107</enddate><creator>Wu, Lei</creator><creator>Eberhart, Michael</creator><creator>Nayak, Animesh</creator><creator>Brennaman, M. Kyle</creator><creator>Shan, Bing</creator><creator>Meyer, Thomas J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7006-2608</orcidid><orcidid>https://orcid.org/0000000270062608</orcidid></search><sort><creationdate>20181107</creationdate><title>A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation</title><author>Wu, Lei ; Eberhart, Michael ; Nayak, Animesh ; Brennaman, M. Kyle ; Shan, Bing ; Meyer, Thomas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>catalysis (heterogeneous)</topic><topic>catalysis (homogeneous)</topic><topic>charge transport</topic><topic>defects</topic><topic>electrocatalysis</topic><topic>ENERGY STORAGE</topic><topic>materials and chemistry by design</topic><topic>mesostructured materials</topic><topic>photosynthesis (natural and artificial)</topic><topic>solar (fuels)</topic><topic>synthesis (novel materials)</topic><topic>synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Eberhart, Michael</creatorcontrib><creatorcontrib>Nayak, Animesh</creatorcontrib><creatorcontrib>Brennaman, M. Kyle</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Meyer, Thomas J</creatorcontrib><creatorcontrib>Univ. of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Lei</au><au>Eberhart, Michael</au><au>Nayak, Animesh</au><au>Brennaman, M. Kyle</au><au>Shan, Bing</au><au>Meyer, Thomas J</au><aucorp>Univ. of North Carolina, Chapel Hill, NC (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-11-07</date><risdate>2018</risdate><volume>140</volume><issue>44</issue><spage>15062</spage><epage>15069</epage><pages>15062-15069</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Photoanodes in dye-sensitized photoelectrosynthesis cells integrate molecular chromophore/catalyst assemblies on mesoporous n-type metal oxide electrodes for light-driven water oxidation. One limitation for sustainable photoanodes is the stability of chromophore/catalyst assembly on electrode surfaces for long periods. Progress has been made in stabilizing chromophores based on atomic layer deposition, polymer dip coating, C–C cross-coupling by electropolymerization, and silane surface binding, but little progress has been made on catalyst stabilization. We report here the silane-derivatized catalyst, Ru­(bda)­(L)2 (bda = 2,2′-bipyridine-6,6′-dicarboxylate, L = 4-(6-(triethoxysilyl)­hexyl)­pyridine), catalyst 1, which is stabilized on metal oxide electrode surfaces over an extended pH range. A surface stabilization study shows that it maintains its reactivity on the electrode surface toward electrochemical oxidation over a wide range of conditions. Its electrochemical stability on electrode surfaces has been systematically evaluated, and its role as a catalyst for water oxidation has been explored. On surfaces of mesoporous nanostructured core/shell SnO2/TiO2, with a TiO2 stabilized inner layer of the Ru­(II) polypyridyl chromophore, [Ru­(4,4′-(PO3H2)2bpy)­(bpy)2]2+ (RuP 2+ ; bpy = 2,2′-bipyridine), highly efficient photoelectrochemical water oxidation catalysis occurs to produce O2 with a maximum efficiency of ∼1.25 mA/cm2. Long-term loss of catalytic activity occurs with time owing to catalyst loss from the electrode surface by axial ligand dissociation in the high oxidation states of the catalyst.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30371065</pmid><doi>10.1021/jacs.8b10132</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7006-2608</orcidid><orcidid>https://orcid.org/0000000270062608</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-11, Vol.140 (44), p.15062-15069
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1566591
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects catalysis (heterogeneous)
catalysis (homogeneous)
charge transport
defects
electrocatalysis
ENERGY STORAGE
materials and chemistry by design
mesostructured materials
photosynthesis (natural and artificial)
solar (fuels)
synthesis (novel materials)
synthesis (self-assembly)
title A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Molecular%20Silane-Derivatized%20Ru(II)%20Catalyst%20for%20Photoelectrochemical%20Water%20Oxidation&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wu,%20Lei&rft.aucorp=Univ.%20of%20North%20Carolina,%20Chapel%20Hill,%20NC%20(United%20States)&rft.date=2018-11-07&rft.volume=140&rft.issue=44&rft.spage=15062&rft.epage=15069&rft.pages=15062-15069&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b10132&rft_dat=%3Cproquest_osti_%3E2126902808%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126902808&rft_id=info:pmid/30371065&rfr_iscdi=true