Loading…
A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation
Photoanodes in dye-sensitized photoelectrosynthesis cells integrate molecular chromophore/catalyst assemblies on mesoporous n-type metal oxide electrodes for light-driven water oxidation. One limitation for sustainable photoanodes is the stability of chromophore/catalyst assembly on electrode surfac...
Saved in:
Published in: | Journal of the American Chemical Society 2018-11, Vol.140 (44), p.15062-15069 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3 |
container_end_page | 15069 |
container_issue | 44 |
container_start_page | 15062 |
container_title | Journal of the American Chemical Society |
container_volume | 140 |
creator | Wu, Lei Eberhart, Michael Nayak, Animesh Brennaman, M. Kyle Shan, Bing Meyer, Thomas J |
description | Photoanodes in dye-sensitized photoelectrosynthesis cells integrate molecular chromophore/catalyst assemblies on mesoporous n-type metal oxide electrodes for light-driven water oxidation. One limitation for sustainable photoanodes is the stability of chromophore/catalyst assembly on electrode surfaces for long periods. Progress has been made in stabilizing chromophores based on atomic layer deposition, polymer dip coating, C–C cross-coupling by electropolymerization, and silane surface binding, but little progress has been made on catalyst stabilization. We report here the silane-derivatized catalyst, Ru(bda)(L)2 (bda = 2,2′-bipyridine-6,6′-dicarboxylate, L = 4-(6-(triethoxysilyl)hexyl)pyridine), catalyst 1, which is stabilized on metal oxide electrode surfaces over an extended pH range. A surface stabilization study shows that it maintains its reactivity on the electrode surface toward electrochemical oxidation over a wide range of conditions. Its electrochemical stability on electrode surfaces has been systematically evaluated, and its role as a catalyst for water oxidation has been explored. On surfaces of mesoporous nanostructured core/shell SnO2/TiO2, with a TiO2 stabilized inner layer of the Ru(II) polypyridyl chromophore, [Ru(4,4′-(PO3H2)2bpy)(bpy)2]2+ (RuP 2+ ; bpy = 2,2′-bipyridine), highly efficient photoelectrochemical water oxidation catalysis occurs to produce O2 with a maximum efficiency of ∼1.25 mA/cm2. Long-term loss of catalytic activity occurs with time owing to catalyst loss from the electrode surface by axial ligand dissociation in the high oxidation states of the catalyst. |
doi_str_mv | 10.1021/jacs.8b10132 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1566591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126902808</sourcerecordid><originalsourceid>FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3</originalsourceid><addsrcrecordid>eNptkEtP4zAURi0EGgrMjvUoYlWkCfjasRMvUedBJVARD3VpOY6jukpjsJ0R5dfjqoXZsLKudL7v-h6ETgFfACZwuVQ6XFQ1YKBkD42AEZwzIHwfjTDGJC8rTg_RUQjLNBakgm_okGJaAuZshOZX2a3rjB465bMH26ne5L-Mt_9UtG-mye6H8XR6nk1UVN06xKx1PrtbuOhMCkXv9MKsrFZdNlfR-Gz2apuUdP0JOmhVF8z33XuMnv78fpxc5zezv9PJ1U2uClHEvOK8boAoUUHbUM2AtsIAKRtaEwLQilZRITDDBW0KLQirCs5VWzNVMoZLTY_R2bbXhWhl0DYavdCu79PvJDDOmYAEjbfQs3cvgwlRrmzQpttc64YgSdIlMKlwldCfW1R7F4I3rXz2dqX8WgKWG99y41vufCf8x655qFem-YQ_BP9fvUkt3eD7ZOPrrneWiYcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126902808</pqid></control><display><type>article</type><title>A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Wu, Lei ; Eberhart, Michael ; Nayak, Animesh ; Brennaman, M. Kyle ; Shan, Bing ; Meyer, Thomas J</creator><creatorcontrib>Wu, Lei ; Eberhart, Michael ; Nayak, Animesh ; Brennaman, M. Kyle ; Shan, Bing ; Meyer, Thomas J ; Univ. of North Carolina, Chapel Hill, NC (United States) ; Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</creatorcontrib><description>Photoanodes in dye-sensitized photoelectrosynthesis cells integrate molecular chromophore/catalyst assemblies on mesoporous n-type metal oxide electrodes for light-driven water oxidation. One limitation for sustainable photoanodes is the stability of chromophore/catalyst assembly on electrode surfaces for long periods. Progress has been made in stabilizing chromophores based on atomic layer deposition, polymer dip coating, C–C cross-coupling by electropolymerization, and silane surface binding, but little progress has been made on catalyst stabilization. We report here the silane-derivatized catalyst, Ru(bda)(L)2 (bda = 2,2′-bipyridine-6,6′-dicarboxylate, L = 4-(6-(triethoxysilyl)hexyl)pyridine), catalyst 1, which is stabilized on metal oxide electrode surfaces over an extended pH range. A surface stabilization study shows that it maintains its reactivity on the electrode surface toward electrochemical oxidation over a wide range of conditions. Its electrochemical stability on electrode surfaces has been systematically evaluated, and its role as a catalyst for water oxidation has been explored. On surfaces of mesoporous nanostructured core/shell SnO2/TiO2, with a TiO2 stabilized inner layer of the Ru(II) polypyridyl chromophore, [Ru(4,4′-(PO3H2)2bpy)(bpy)2]2+ (RuP 2+ ; bpy = 2,2′-bipyridine), highly efficient photoelectrochemical water oxidation catalysis occurs to produce O2 with a maximum efficiency of ∼1.25 mA/cm2. Long-term loss of catalytic activity occurs with time owing to catalyst loss from the electrode surface by axial ligand dissociation in the high oxidation states of the catalyst.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b10132</identifier><identifier>PMID: 30371065</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalysis (heterogeneous) ; catalysis (homogeneous) ; charge transport ; defects ; electrocatalysis ; ENERGY STORAGE ; materials and chemistry by design ; mesostructured materials ; photosynthesis (natural and artificial) ; solar (fuels) ; synthesis (novel materials) ; synthesis (self-assembly)</subject><ispartof>Journal of the American Chemical Society, 2018-11, Vol.140 (44), p.15062-15069</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3</citedby><cites>FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3</cites><orcidid>0000-0002-7006-2608 ; 0000000270062608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30371065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1566591$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Eberhart, Michael</creatorcontrib><creatorcontrib>Nayak, Animesh</creatorcontrib><creatorcontrib>Brennaman, M. Kyle</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Meyer, Thomas J</creatorcontrib><creatorcontrib>Univ. of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</creatorcontrib><title>A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Photoanodes in dye-sensitized photoelectrosynthesis cells integrate molecular chromophore/catalyst assemblies on mesoporous n-type metal oxide electrodes for light-driven water oxidation. One limitation for sustainable photoanodes is the stability of chromophore/catalyst assembly on electrode surfaces for long periods. Progress has been made in stabilizing chromophores based on atomic layer deposition, polymer dip coating, C–C cross-coupling by electropolymerization, and silane surface binding, but little progress has been made on catalyst stabilization. We report here the silane-derivatized catalyst, Ru(bda)(L)2 (bda = 2,2′-bipyridine-6,6′-dicarboxylate, L = 4-(6-(triethoxysilyl)hexyl)pyridine), catalyst 1, which is stabilized on metal oxide electrode surfaces over an extended pH range. A surface stabilization study shows that it maintains its reactivity on the electrode surface toward electrochemical oxidation over a wide range of conditions. Its electrochemical stability on electrode surfaces has been systematically evaluated, and its role as a catalyst for water oxidation has been explored. On surfaces of mesoporous nanostructured core/shell SnO2/TiO2, with a TiO2 stabilized inner layer of the Ru(II) polypyridyl chromophore, [Ru(4,4′-(PO3H2)2bpy)(bpy)2]2+ (RuP 2+ ; bpy = 2,2′-bipyridine), highly efficient photoelectrochemical water oxidation catalysis occurs to produce O2 with a maximum efficiency of ∼1.25 mA/cm2. Long-term loss of catalytic activity occurs with time owing to catalyst loss from the electrode surface by axial ligand dissociation in the high oxidation states of the catalyst.</description><subject>catalysis (heterogeneous)</subject><subject>catalysis (homogeneous)</subject><subject>charge transport</subject><subject>defects</subject><subject>electrocatalysis</subject><subject>ENERGY STORAGE</subject><subject>materials and chemistry by design</subject><subject>mesostructured materials</subject><subject>photosynthesis (natural and artificial)</subject><subject>solar (fuels)</subject><subject>synthesis (novel materials)</subject><subject>synthesis (self-assembly)</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkEtP4zAURi0EGgrMjvUoYlWkCfjasRMvUedBJVARD3VpOY6jukpjsJ0R5dfjqoXZsLKudL7v-h6ETgFfACZwuVQ6XFQ1YKBkD42AEZwzIHwfjTDGJC8rTg_RUQjLNBakgm_okGJaAuZshOZX2a3rjB465bMH26ne5L-Mt_9UtG-mye6H8XR6nk1UVN06xKx1PrtbuOhMCkXv9MKsrFZdNlfR-Gz2apuUdP0JOmhVF8z33XuMnv78fpxc5zezv9PJ1U2uClHEvOK8boAoUUHbUM2AtsIAKRtaEwLQilZRITDDBW0KLQirCs5VWzNVMoZLTY_R2bbXhWhl0DYavdCu79PvJDDOmYAEjbfQs3cvgwlRrmzQpttc64YgSdIlMKlwldCfW1R7F4I3rXz2dqX8WgKWG99y41vufCf8x655qFem-YQ_BP9fvUkt3eD7ZOPrrneWiYcA</recordid><startdate>20181107</startdate><enddate>20181107</enddate><creator>Wu, Lei</creator><creator>Eberhart, Michael</creator><creator>Nayak, Animesh</creator><creator>Brennaman, M. Kyle</creator><creator>Shan, Bing</creator><creator>Meyer, Thomas J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7006-2608</orcidid><orcidid>https://orcid.org/0000000270062608</orcidid></search><sort><creationdate>20181107</creationdate><title>A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation</title><author>Wu, Lei ; Eberhart, Michael ; Nayak, Animesh ; Brennaman, M. Kyle ; Shan, Bing ; Meyer, Thomas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>catalysis (heterogeneous)</topic><topic>catalysis (homogeneous)</topic><topic>charge transport</topic><topic>defects</topic><topic>electrocatalysis</topic><topic>ENERGY STORAGE</topic><topic>materials and chemistry by design</topic><topic>mesostructured materials</topic><topic>photosynthesis (natural and artificial)</topic><topic>solar (fuels)</topic><topic>synthesis (novel materials)</topic><topic>synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Eberhart, Michael</creatorcontrib><creatorcontrib>Nayak, Animesh</creatorcontrib><creatorcontrib>Brennaman, M. Kyle</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Meyer, Thomas J</creatorcontrib><creatorcontrib>Univ. of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Lei</au><au>Eberhart, Michael</au><au>Nayak, Animesh</au><au>Brennaman, M. Kyle</au><au>Shan, Bing</au><au>Meyer, Thomas J</au><aucorp>Univ. of North Carolina, Chapel Hill, NC (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-11-07</date><risdate>2018</risdate><volume>140</volume><issue>44</issue><spage>15062</spage><epage>15069</epage><pages>15062-15069</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Photoanodes in dye-sensitized photoelectrosynthesis cells integrate molecular chromophore/catalyst assemblies on mesoporous n-type metal oxide electrodes for light-driven water oxidation. One limitation for sustainable photoanodes is the stability of chromophore/catalyst assembly on electrode surfaces for long periods. Progress has been made in stabilizing chromophores based on atomic layer deposition, polymer dip coating, C–C cross-coupling by electropolymerization, and silane surface binding, but little progress has been made on catalyst stabilization. We report here the silane-derivatized catalyst, Ru(bda)(L)2 (bda = 2,2′-bipyridine-6,6′-dicarboxylate, L = 4-(6-(triethoxysilyl)hexyl)pyridine), catalyst 1, which is stabilized on metal oxide electrode surfaces over an extended pH range. A surface stabilization study shows that it maintains its reactivity on the electrode surface toward electrochemical oxidation over a wide range of conditions. Its electrochemical stability on electrode surfaces has been systematically evaluated, and its role as a catalyst for water oxidation has been explored. On surfaces of mesoporous nanostructured core/shell SnO2/TiO2, with a TiO2 stabilized inner layer of the Ru(II) polypyridyl chromophore, [Ru(4,4′-(PO3H2)2bpy)(bpy)2]2+ (RuP 2+ ; bpy = 2,2′-bipyridine), highly efficient photoelectrochemical water oxidation catalysis occurs to produce O2 with a maximum efficiency of ∼1.25 mA/cm2. Long-term loss of catalytic activity occurs with time owing to catalyst loss from the electrode surface by axial ligand dissociation in the high oxidation states of the catalyst.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30371065</pmid><doi>10.1021/jacs.8b10132</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7006-2608</orcidid><orcidid>https://orcid.org/0000000270062608</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2018-11, Vol.140 (44), p.15062-15069 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1566591 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | catalysis (heterogeneous) catalysis (homogeneous) charge transport defects electrocatalysis ENERGY STORAGE materials and chemistry by design mesostructured materials photosynthesis (natural and artificial) solar (fuels) synthesis (novel materials) synthesis (self-assembly) |
title | A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Molecular%20Silane-Derivatized%20Ru(II)%20Catalyst%20for%20Photoelectrochemical%20Water%20Oxidation&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wu,%20Lei&rft.aucorp=Univ.%20of%20North%20Carolina,%20Chapel%20Hill,%20NC%20(United%20States)&rft.date=2018-11-07&rft.volume=140&rft.issue=44&rft.spage=15062&rft.epage=15069&rft.pages=15062-15069&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b10132&rft_dat=%3Cproquest_osti_%3E2126902808%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a494t-866bd12a981fd3c513f9e127d3b2211f9fa39905043d4c9258466afb5a75507c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126902808&rft_id=info:pmid/30371065&rfr_iscdi=true |