Loading…

Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet

Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray ph...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2019-11, Vol.123 (19), p.197202-197202, Article 197202
Main Authors: Chen, X. M., Farmer, B., Woods, J. S., Dhuey, S., Hu, W., Mazzoli, C., Wilkins, S. B., Chopdekar, R. V., Scholl, A., Robinson, I. K., De Long, L. E., Roy, S., Hastings, J. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-3ec8b2a6baa7e6b42eee828afa9df345ecdf172007be12721e044531deb263ee3
cites cdi_FETCH-LOGICAL-c391t-3ec8b2a6baa7e6b42eee828afa9df345ecdf172007be12721e044531deb263ee3
container_end_page 197202
container_issue 19
container_start_page 197202
container_title Physical review letters
container_volume 123
creator Chen, X. M.
Farmer, B.
Woods, J. S.
Dhuey, S.
Hu, W.
Mazzoli, C.
Wilkins, S. B.
Chopdekar, R. V.
Scholl, A.
Robinson, I. K.
De Long, L. E.
Roy, S.
Hastings, J. T.
description Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion below the antiferromagnetic onset temperature, similar to the behavior of typical bulk antiferromagnets. Using a continuous time random walk model we show that these superdomain walls undergo low-temperature ballistic and high-temperature diffusive motions.
doi_str_mv 10.1103/PhysRevLett.123.197202
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1566874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317573139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-3ec8b2a6baa7e6b42eee828afa9df345ecdf172007be12721e044531deb263ee3</originalsourceid><addsrcrecordid>eNpdkcFKAzEQhoMoWKuvIItevGzNJNvN7rGIVaGiWMVjyKazNrJNapIV-vamrAfxNMPwzQ8_HyHnQCcAlF8_r3fhBb8XGOMEGJ9ALRhlB2QEVNS5ACgOyYhSDnlNqTgmJyF8UkqBldWILJdbZ6Oy6PqQPaoPi9HobNlv0a_cRhmbvauuy-Zdr2OvonE2ZOmobDbz0bRGG9VlM5tW9D497ANOyVGruoBnv3NM3ua3rzf3-eLp7uFmtsg1ryHmHHXVMFU2Sgksm4IhYsUq1ap61fJiinrVQqpCRYPABAOkRTHlsMKGlRyRj8nFkOtCNDJoE1GvtbMWdZQwLctKFAm6GqCtd189hig3JmjsuqGzZBwqwbkoq4Re_kM_Xe9tqrCnxFRw4HWiyoHS3oXgsZVbbzbK7yRQuRci_wiRSYgchPAfddGCWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317573139</pqid></control><display><type>article</type><title>Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Chen, X. M. ; Farmer, B. ; Woods, J. S. ; Dhuey, S. ; Hu, W. ; Mazzoli, C. ; Wilkins, S. B. ; Chopdekar, R. V. ; Scholl, A. ; Robinson, I. K. ; De Long, L. E. ; Roy, S. ; Hastings, J. T.</creator><creatorcontrib>Chen, X. M. ; Farmer, B. ; Woods, J. S. ; Dhuey, S. ; Hu, W. ; Mazzoli, C. ; Wilkins, S. B. ; Chopdekar, R. V. ; Scholl, A. ; Robinson, I. K. ; De Long, L. E. ; Roy, S. ; Hastings, J. T. ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States) ; Univ. of Kentucky, Lexington, KY (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion below the antiferromagnetic onset temperature, similar to the behavior of typical bulk antiferromagnets. Using a continuous time random walk model we show that these superdomain walls undergo low-temperature ballistic and high-temperature diffusive motions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.197202</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Antiferromagnetism ; artificial spin ice ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Dipolar interaction ; Domain walls ; Dynamic stability ; Dynamics of phase separation ; High temperature ; Low temperature ; Magnetic phase transitions ; Magnetization dynamics ; MATERIALS SCIENCE ; Metamaterials ; nanomagnetics ; NANOSCIENCE AND NANOTECHNOLOGY ; Photon correlation spectroscopy ; Random walk ; Random walk theory ; Soft x rays ; Temperature dependence ; Variation ; X-ray scattering</subject><ispartof>Physical review letters, 2019-11, Vol.123 (19), p.197202-197202, Article 197202</ispartof><rights>Copyright American Physical Society Nov 8, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-3ec8b2a6baa7e6b42eee828afa9df345ecdf172007be12721e044531deb263ee3</citedby><cites>FETCH-LOGICAL-c391t-3ec8b2a6baa7e6b42eee828afa9df345ecdf172007be12721e044531deb263ee3</cites><orcidid>0000-0001-6727-6501 ; 0000-0002-5695-7894 ; 0000-0003-2686-2736 ; 0000-0003-4897-5221 ; 0000-0003-1191-3350 ; 0000000311913350 ; 0000000167276501 ; 0000000326862736 ; 0000000256957894 ; 0000000348975221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1566874$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, X. M.</creatorcontrib><creatorcontrib>Farmer, B.</creatorcontrib><creatorcontrib>Woods, J. S.</creatorcontrib><creatorcontrib>Dhuey, S.</creatorcontrib><creatorcontrib>Hu, W.</creatorcontrib><creatorcontrib>Mazzoli, C.</creatorcontrib><creatorcontrib>Wilkins, S. B.</creatorcontrib><creatorcontrib>Chopdekar, R. V.</creatorcontrib><creatorcontrib>Scholl, A.</creatorcontrib><creatorcontrib>Robinson, I. K.</creatorcontrib><creatorcontrib>De Long, L. E.</creatorcontrib><creatorcontrib>Roy, S.</creatorcontrib><creatorcontrib>Hastings, J. T.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Kentucky, Lexington, KY (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet</title><title>Physical review letters</title><description>Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion below the antiferromagnetic onset temperature, similar to the behavior of typical bulk antiferromagnets. Using a continuous time random walk model we show that these superdomain walls undergo low-temperature ballistic and high-temperature diffusive motions.</description><subject>Antiferromagnetism</subject><subject>artificial spin ice</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Dipolar interaction</subject><subject>Domain walls</subject><subject>Dynamic stability</subject><subject>Dynamics of phase separation</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Magnetic phase transitions</subject><subject>Magnetization dynamics</subject><subject>MATERIALS SCIENCE</subject><subject>Metamaterials</subject><subject>nanomagnetics</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Photon correlation spectroscopy</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Soft x rays</subject><subject>Temperature dependence</subject><subject>Variation</subject><subject>X-ray scattering</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkcFKAzEQhoMoWKuvIItevGzNJNvN7rGIVaGiWMVjyKazNrJNapIV-vamrAfxNMPwzQ8_HyHnQCcAlF8_r3fhBb8XGOMEGJ9ALRhlB2QEVNS5ACgOyYhSDnlNqTgmJyF8UkqBldWILJdbZ6Oy6PqQPaoPi9HobNlv0a_cRhmbvauuy-Zdr2OvonE2ZOmobDbz0bRGG9VlM5tW9D497ANOyVGruoBnv3NM3ua3rzf3-eLp7uFmtsg1ryHmHHXVMFU2Sgksm4IhYsUq1ap61fJiinrVQqpCRYPABAOkRTHlsMKGlRyRj8nFkOtCNDJoE1GvtbMWdZQwLctKFAm6GqCtd189hig3JmjsuqGzZBwqwbkoq4Re_kM_Xe9tqrCnxFRw4HWiyoHS3oXgsZVbbzbK7yRQuRci_wiRSYgchPAfddGCWQ</recordid><startdate>20191106</startdate><enddate>20191106</enddate><creator>Chen, X. M.</creator><creator>Farmer, B.</creator><creator>Woods, J. S.</creator><creator>Dhuey, S.</creator><creator>Hu, W.</creator><creator>Mazzoli, C.</creator><creator>Wilkins, S. B.</creator><creator>Chopdekar, R. V.</creator><creator>Scholl, A.</creator><creator>Robinson, I. K.</creator><creator>De Long, L. E.</creator><creator>Roy, S.</creator><creator>Hastings, J. T.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6727-6501</orcidid><orcidid>https://orcid.org/0000-0002-5695-7894</orcidid><orcidid>https://orcid.org/0000-0003-2686-2736</orcidid><orcidid>https://orcid.org/0000-0003-4897-5221</orcidid><orcidid>https://orcid.org/0000-0003-1191-3350</orcidid><orcidid>https://orcid.org/0000000311913350</orcidid><orcidid>https://orcid.org/0000000167276501</orcidid><orcidid>https://orcid.org/0000000326862736</orcidid><orcidid>https://orcid.org/0000000256957894</orcidid><orcidid>https://orcid.org/0000000348975221</orcidid></search><sort><creationdate>20191106</creationdate><title>Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet</title><author>Chen, X. M. ; Farmer, B. ; Woods, J. S. ; Dhuey, S. ; Hu, W. ; Mazzoli, C. ; Wilkins, S. B. ; Chopdekar, R. V. ; Scholl, A. ; Robinson, I. K. ; De Long, L. E. ; Roy, S. ; Hastings, J. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-3ec8b2a6baa7e6b42eee828afa9df345ecdf172007be12721e044531deb263ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiferromagnetism</topic><topic>artificial spin ice</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Dipolar interaction</topic><topic>Domain walls</topic><topic>Dynamic stability</topic><topic>Dynamics of phase separation</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Magnetic phase transitions</topic><topic>Magnetization dynamics</topic><topic>MATERIALS SCIENCE</topic><topic>Metamaterials</topic><topic>nanomagnetics</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Photon correlation spectroscopy</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Soft x rays</topic><topic>Temperature dependence</topic><topic>Variation</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, X. M.</creatorcontrib><creatorcontrib>Farmer, B.</creatorcontrib><creatorcontrib>Woods, J. S.</creatorcontrib><creatorcontrib>Dhuey, S.</creatorcontrib><creatorcontrib>Hu, W.</creatorcontrib><creatorcontrib>Mazzoli, C.</creatorcontrib><creatorcontrib>Wilkins, S. B.</creatorcontrib><creatorcontrib>Chopdekar, R. V.</creatorcontrib><creatorcontrib>Scholl, A.</creatorcontrib><creatorcontrib>Robinson, I. K.</creatorcontrib><creatorcontrib>De Long, L. E.</creatorcontrib><creatorcontrib>Roy, S.</creatorcontrib><creatorcontrib>Hastings, J. T.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Kentucky, Lexington, KY (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, X. M.</au><au>Farmer, B.</au><au>Woods, J. S.</au><au>Dhuey, S.</au><au>Hu, W.</au><au>Mazzoli, C.</au><au>Wilkins, S. B.</au><au>Chopdekar, R. V.</au><au>Scholl, A.</au><au>Robinson, I. K.</au><au>De Long, L. E.</au><au>Roy, S.</au><au>Hastings, J. T.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><aucorp>Univ. of Kentucky, Lexington, KY (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet</atitle><jtitle>Physical review letters</jtitle><date>2019-11-06</date><risdate>2019</risdate><volume>123</volume><issue>19</issue><spage>197202</spage><epage>197202</epage><pages>197202-197202</pages><artnum>197202</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion below the antiferromagnetic onset temperature, similar to the behavior of typical bulk antiferromagnets. Using a continuous time random walk model we show that these superdomain walls undergo low-temperature ballistic and high-temperature diffusive motions.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.123.197202</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6727-6501</orcidid><orcidid>https://orcid.org/0000-0002-5695-7894</orcidid><orcidid>https://orcid.org/0000-0003-2686-2736</orcidid><orcidid>https://orcid.org/0000-0003-4897-5221</orcidid><orcidid>https://orcid.org/0000-0003-1191-3350</orcidid><orcidid>https://orcid.org/0000000311913350</orcidid><orcidid>https://orcid.org/0000000167276501</orcidid><orcidid>https://orcid.org/0000000326862736</orcidid><orcidid>https://orcid.org/0000000256957894</orcidid><orcidid>https://orcid.org/0000000348975221</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-11, Vol.123 (19), p.197202-197202, Article 197202
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1566874
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Antiferromagnetism
artificial spin ice
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Dipolar interaction
Domain walls
Dynamic stability
Dynamics of phase separation
High temperature
Low temperature
Magnetic phase transitions
Magnetization dynamics
MATERIALS SCIENCE
Metamaterials
nanomagnetics
NANOSCIENCE AND NANOTECHNOLOGY
Photon correlation spectroscopy
Random walk
Random walk theory
Soft x rays
Temperature dependence
Variation
X-ray scattering
title Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spontaneous%20Magnetic%20Superdomain%20Wall%20Fluctuations%20in%20an%20Artificial%20Antiferromagnet&rft.jtitle=Physical%20review%20letters&rft.au=Chen,%20X.%20M.&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-11-06&rft.volume=123&rft.issue=19&rft.spage=197202&rft.epage=197202&rft.pages=197202-197202&rft.artnum=197202&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.197202&rft_dat=%3Cproquest_osti_%3E2317573139%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-3ec8b2a6baa7e6b42eee828afa9df345ecdf172007be12721e044531deb263ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2317573139&rft_id=info:pmid/&rfr_iscdi=true