Loading…
Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions
An elementary question in porous media research is in regard to the relationship between structure and function. In most fields, the porosity and permeability of porous media are properties of key interest. There is, however, no universal relationship between porosity and permeability since not only...
Saved in:
Published in: | Transport in porous media 2019-10, Vol.130 (1), p.305-335 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-67a95b333e208e60716b125d23ed1082f4c49bf819dc4fae76f8f13f99d648343 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-67a95b333e208e60716b125d23ed1082f4c49bf819dc4fae76f8f13f99d648343 |
container_end_page | 335 |
container_issue | 1 |
container_start_page | 305 |
container_title | Transport in porous media |
container_volume | 130 |
creator | Armstrong, Ryan T. McClure, James E. Robins, Vanessa Liu, Zhishang Arns, Christoph H. Schlüter, Steffen Berg, Steffen |
description | An elementary question in porous media research is in regard to the relationship between structure and function. In most fields, the porosity and permeability of porous media are properties of key interest. There is, however, no universal relationship between porosity and permeability since not only does the fraction of void space matter for permeability but also the connectivity of the void fraction. With the evolution of modern day X-ray microcomputed tomography (micro-CT) and advanced computing, it is now possible to visualize porous media at an unprecedented level of detail. Approaches in analyzing micro-CT data of porous structures vary in the literature from phenomenological characterization to network analysis to geometrical and/or topological measurements. This leads to a question about how to consistently characterize porous media in a way that facilitates theoretical developments. In this effort, the Minkowski functionals (MF) emerge from the field of statistical physics where it is evident that many physical processes depend on the geometry and topology of bodies or multiple bodies in 3D space. Herein we review the theoretical basis of the MF, mathematical theorems and methods necessary for porous media characterization, common measurement errors when using micro-CT data and recent findings relating the MF to macroscale porous media properties. This paper is written to provide the basics necessary for porous media characterization and theoretical developments. With the wealth of information generated from 3D imaging of porous media, it is necessary to develop an understanding of the limitations and opportunities in this exciting area of research. |
doi_str_mv | 10.1007/s11242-018-1201-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1567538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300018257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-67a95b333e208e60716b125d23ed1082f4c49bf819dc4fae76f8f13f99d648343</originalsourceid><addsrcrecordid>eNp1kEFPwyAYQInRxDn9Ad6IXq3yAW2pt2U6Ndmih-1MGKUb2ywT2hj99dLVxJMnDrz3wfcQugRyC4TkdwGAcpoQEAlQAgk_QgNIc5ZAxvgxGhDIioQVwE7RWQgbQqIl-ACt3px3bcAzU1qFx2vllW6Mt9-qsa7Gi2DrFZ7Zeus-w9biSVvr7kLtwj2er43z1oQbPNrvd1YflIBVXUauab3BD9abAx_O0UkVJXPxew7RYvI4Hz8n09enl_FommhOiibJclWkS8aYoUSYjOSQLYGmJWWmBCJoxTUvlpWAotS8UibPKlEBq4qizLhgnA3RVT_XhcbKoG1j9Fq7uo7_kJBmecpEhK57aO_dR2tCIzeu9d1SkjIS2wga0w0R9JT2LgRvKrn39l35LwlEdtFlH11GXnbRZfc87Z0Q2Xpl_N_k_6Uf26WELw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300018257</pqid></control><display><type>article</type><title>Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions</title><source>Springer Link</source><creator>Armstrong, Ryan T. ; McClure, James E. ; Robins, Vanessa ; Liu, Zhishang ; Arns, Christoph H. ; Schlüter, Steffen ; Berg, Steffen</creator><creatorcontrib>Armstrong, Ryan T. ; McClure, James E. ; Robins, Vanessa ; Liu, Zhishang ; Arns, Christoph H. ; Schlüter, Steffen ; Berg, Steffen ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>An elementary question in porous media research is in regard to the relationship between structure and function. In most fields, the porosity and permeability of porous media are properties of key interest. There is, however, no universal relationship between porosity and permeability since not only does the fraction of void space matter for permeability but also the connectivity of the void fraction. With the evolution of modern day X-ray microcomputed tomography (micro-CT) and advanced computing, it is now possible to visualize porous media at an unprecedented level of detail. Approaches in analyzing micro-CT data of porous structures vary in the literature from phenomenological characterization to network analysis to geometrical and/or topological measurements. This leads to a question about how to consistently characterize porous media in a way that facilitates theoretical developments. In this effort, the Minkowski functionals (MF) emerge from the field of statistical physics where it is evident that many physical processes depend on the geometry and topology of bodies or multiple bodies in 3D space. Herein we review the theoretical basis of the MF, mathematical theorems and methods necessary for porous media characterization, common measurement errors when using micro-CT data and recent findings relating the MF to macroscale porous media properties. This paper is written to provide the basics necessary for porous media characterization and theoretical developments. With the wealth of information generated from 3D imaging of porous media, it is necessary to develop an understanding of the limitations and opportunities in this exciting area of research.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-018-1201-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Classical and Continuum Physics ; Computed tomography ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Network analysis ; Permeability ; Porosity ; Porous media ; Questions ; Three dimensional bodies ; Topology ; Void fraction</subject><ispartof>Transport in porous media, 2019-10, Vol.130 (1), p.305-335</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Transport in Porous Media is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-67a95b333e208e60716b125d23ed1082f4c49bf819dc4fae76f8f13f99d648343</citedby><cites>FETCH-LOGICAL-c409t-67a95b333e208e60716b125d23ed1082f4c49bf819dc4fae76f8f13f99d648343</cites><orcidid>0000-0001-6431-7902 ; 0000-0003-2441-7719 ; 0000000164317902 ; 0000000324417719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1567538$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Armstrong, Ryan T.</creatorcontrib><creatorcontrib>McClure, James E.</creatorcontrib><creatorcontrib>Robins, Vanessa</creatorcontrib><creatorcontrib>Liu, Zhishang</creatorcontrib><creatorcontrib>Arns, Christoph H.</creatorcontrib><creatorcontrib>Schlüter, Steffen</creatorcontrib><creatorcontrib>Berg, Steffen</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>An elementary question in porous media research is in regard to the relationship between structure and function. In most fields, the porosity and permeability of porous media are properties of key interest. There is, however, no universal relationship between porosity and permeability since not only does the fraction of void space matter for permeability but also the connectivity of the void fraction. With the evolution of modern day X-ray microcomputed tomography (micro-CT) and advanced computing, it is now possible to visualize porous media at an unprecedented level of detail. Approaches in analyzing micro-CT data of porous structures vary in the literature from phenomenological characterization to network analysis to geometrical and/or topological measurements. This leads to a question about how to consistently characterize porous media in a way that facilitates theoretical developments. In this effort, the Minkowski functionals (MF) emerge from the field of statistical physics where it is evident that many physical processes depend on the geometry and topology of bodies or multiple bodies in 3D space. Herein we review the theoretical basis of the MF, mathematical theorems and methods necessary for porous media characterization, common measurement errors when using micro-CT data and recent findings relating the MF to macroscale porous media properties. This paper is written to provide the basics necessary for porous media characterization and theoretical developments. With the wealth of information generated from 3D imaging of porous media, it is necessary to develop an understanding of the limitations and opportunities in this exciting area of research.</description><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computed tomography</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Network analysis</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Questions</subject><subject>Three dimensional bodies</subject><subject>Topology</subject><subject>Void fraction</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwyAYQInRxDn9Ad6IXq3yAW2pt2U6Ndmih-1MGKUb2ywT2hj99dLVxJMnDrz3wfcQugRyC4TkdwGAcpoQEAlQAgk_QgNIc5ZAxvgxGhDIioQVwE7RWQgbQqIl-ACt3px3bcAzU1qFx2vllW6Mt9-qsa7Gi2DrFZ7Zeus-w9biSVvr7kLtwj2er43z1oQbPNrvd1YflIBVXUauab3BD9abAx_O0UkVJXPxew7RYvI4Hz8n09enl_FommhOiibJclWkS8aYoUSYjOSQLYGmJWWmBCJoxTUvlpWAotS8UibPKlEBq4qizLhgnA3RVT_XhcbKoG1j9Fq7uo7_kJBmecpEhK57aO_dR2tCIzeu9d1SkjIS2wga0w0R9JT2LgRvKrn39l35LwlEdtFlH11GXnbRZfc87Z0Q2Xpl_N_k_6Uf26WELw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Armstrong, Ryan T.</creator><creator>McClure, James E.</creator><creator>Robins, Vanessa</creator><creator>Liu, Zhishang</creator><creator>Arns, Christoph H.</creator><creator>Schlüter, Steffen</creator><creator>Berg, Steffen</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6431-7902</orcidid><orcidid>https://orcid.org/0000-0003-2441-7719</orcidid><orcidid>https://orcid.org/0000000164317902</orcidid><orcidid>https://orcid.org/0000000324417719</orcidid></search><sort><creationdate>20191001</creationdate><title>Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions</title><author>Armstrong, Ryan T. ; McClure, James E. ; Robins, Vanessa ; Liu, Zhishang ; Arns, Christoph H. ; Schlüter, Steffen ; Berg, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-67a95b333e208e60716b125d23ed1082f4c49bf819dc4fae76f8f13f99d648343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computed tomography</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Network analysis</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Questions</topic><topic>Three dimensional bodies</topic><topic>Topology</topic><topic>Void fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armstrong, Ryan T.</creatorcontrib><creatorcontrib>McClure, James E.</creatorcontrib><creatorcontrib>Robins, Vanessa</creatorcontrib><creatorcontrib>Liu, Zhishang</creatorcontrib><creatorcontrib>Arns, Christoph H.</creatorcontrib><creatorcontrib>Schlüter, Steffen</creatorcontrib><creatorcontrib>Berg, Steffen</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>OSTI.GOV</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armstrong, Ryan T.</au><au>McClure, James E.</au><au>Robins, Vanessa</au><au>Liu, Zhishang</au><au>Arns, Christoph H.</au><au>Schlüter, Steffen</au><au>Berg, Steffen</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>130</volume><issue>1</issue><spage>305</spage><epage>335</epage><pages>305-335</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>An elementary question in porous media research is in regard to the relationship between structure and function. In most fields, the porosity and permeability of porous media are properties of key interest. There is, however, no universal relationship between porosity and permeability since not only does the fraction of void space matter for permeability but also the connectivity of the void fraction. With the evolution of modern day X-ray microcomputed tomography (micro-CT) and advanced computing, it is now possible to visualize porous media at an unprecedented level of detail. Approaches in analyzing micro-CT data of porous structures vary in the literature from phenomenological characterization to network analysis to geometrical and/or topological measurements. This leads to a question about how to consistently characterize porous media in a way that facilitates theoretical developments. In this effort, the Minkowski functionals (MF) emerge from the field of statistical physics where it is evident that many physical processes depend on the geometry and topology of bodies or multiple bodies in 3D space. Herein we review the theoretical basis of the MF, mathematical theorems and methods necessary for porous media characterization, common measurement errors when using micro-CT data and recent findings relating the MF to macroscale porous media properties. This paper is written to provide the basics necessary for porous media characterization and theoretical developments. With the wealth of information generated from 3D imaging of porous media, it is necessary to develop an understanding of the limitations and opportunities in this exciting area of research.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-018-1201-4</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-6431-7902</orcidid><orcidid>https://orcid.org/0000-0003-2441-7719</orcidid><orcidid>https://orcid.org/0000000164317902</orcidid><orcidid>https://orcid.org/0000000324417719</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2019-10, Vol.130 (1), p.305-335 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_osti_scitechconnect_1567538 |
source | Springer Link |
subjects | Civil Engineering Classical and Continuum Physics Computed tomography Earth and Environmental Science Earth Sciences Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Network analysis Permeability Porosity Porous media Questions Three dimensional bodies Topology Void fraction |
title | Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Media%20Characterization%20Using%20Minkowski%20Functionals:%20Theories,%20Applications%20and%20Future%20Directions&rft.jtitle=Transport%20in%20porous%20media&rft.au=Armstrong,%20Ryan%20T.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2019-10-01&rft.volume=130&rft.issue=1&rft.spage=305&rft.epage=335&rft.pages=305-335&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-018-1201-4&rft_dat=%3Cproquest_osti_%3E2300018257%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-67a95b333e208e60716b125d23ed1082f4c49bf819dc4fae76f8f13f99d648343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300018257&rft_id=info:pmid/&rfr_iscdi=true |