Loading…

Metrics for understanding large-scale controls of multivariate temperature and precipitation variability

Two or more spatio-temporally co-located meteorological/climatological extremes (co-occurring extremes) place far greater stress on human and ecological systems than any single extreme could. This was observed during the California drought of 2011–2015 where multiple years of negative precipitation...

Full description

Saved in:
Bibliographic Details
Published in:Climate dynamics 2019-10, Vol.53 (7-8), p.3805-3823
Main Authors: O’Brien, John P., O’Brien, Travis A., Patricola, Christina M., Wang, S.-Y. Simon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two or more spatio-temporally co-located meteorological/climatological extremes (co-occurring extremes) place far greater stress on human and ecological systems than any single extreme could. This was observed during the California drought of 2011–2015 where multiple years of negative precipitation anomalies occurred simultaneously with positive temperature anomalies resulting in California’s worst drought on observational record. The large-scale drivers which modulate the occurrence of extremes in two or more variables remains largely unexplored. Using California wintertime (November–April) temperature and precipitation as a case study, we apply a novel, nonparametric conditional probability distribution method that allows for evaluation of complex, multivariate, and nonlinear relationships that exist among temperature, precipitation, and various indicators of large-scale climate variability and change. We find that multivariate variability and statistics of temperature and precipitation exhibit strong spatial variation across scales that are often treated as being homogeneous. Further, we demonstrate that the multivariate statistics of temperature and precipitation are highly non-stationary and therefore require more robust and sophisticated statistical techniques for accurate characterization. Of all the indicators of the large-scale climate conditions we studied, the dipole index explains the greatest fraction of multivariate variability in the co-occurrence of California wintertime extremes in temperature and precipitation.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-019-04749-6