Loading…

A thermomechanical breakage model for shock-loaded granular media

A constitutive model is developed for dry granular materials that smoothly transitions across a wide range of pressures and temperatures. This model handles large deformations and is thermomechanically consistent. Ideas from critical-state soil mechanics, which model granular media at relatively low...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the mechanics and physics of solids 2020-04, Vol.137 (C), p.103813, Article 103813
Main Authors: Herbold, E.B., Homel, M.A., Rubin, M.B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3
cites cdi_FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3
container_end_page
container_issue C
container_start_page 103813
container_title Journal of the mechanics and physics of solids
container_volume 137
creator Herbold, E.B.
Homel, M.A.
Rubin, M.B.
description A constitutive model is developed for dry granular materials that smoothly transitions across a wide range of pressures and temperatures. This model handles large deformations and is thermomechanically consistent. Ideas from critical-state soil mechanics, which model granular media at relatively low pressure via a breakage model, are combined with an equation of state for shock-loaded solids to investigate the compaction of initially unconsolidated brittle granular materials. The resulting constitutive equations provide a fully-coupled model containing a natural transition between granular and solid states through the Helmholtz free energy. The model is calibrated to data with a wide range of pressures and strain rates for Ottawa sand and silica and predictions of the model are compared with static compaction, penetration, and shock-loading results. The difference in Hugoniot temperatures between this calibrated model and a “snow-plow” model are negligible for pressures greater than 8 GPa; well below incipient melting.
doi_str_mv 10.1016/j.jmps.2019.103813
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1579270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509619306362</els_id><sourcerecordid>2378993920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeg59T9SnYXvJTiFxS86HmZbCZt0iRbd1PBf29CPHsaGN53eOYh5JbRFaMsf2hWTXeMK06ZGRdCM3FGFkwrkUql-TlZUMp5mlGTX5KrGBtKaUYVW5D1Ohn2GDrfodtDXztokyIgHGCHSedLbJPKhyTuvTukrYcSy2QXoD-1EJIOyxquyUUFbcSbv7kkn89PH5vXdPv-8rZZb1MnjBlSkBmtmIaSKwnaFTyjhaRKGiXRGClYZQrpgBe5Rk4LXkmVK62KkhUMKgdiSe7muz4OtY2uHkZi5_se3WBZpgxXdAzdz6Fj8F8njINt_Cn0I5flQmljhOFTis8pF3yMASt7DHUH4ccyaieftrGTTzv5tLPPsfQ4l3B88rvGMDFg70YHYUIoff1f_RfzB30A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378993920</pqid></control><display><type>article</type><title>A thermomechanical breakage model for shock-loaded granular media</title><source>Elsevier</source><creator>Herbold, E.B. ; Homel, M.A. ; Rubin, M.B.</creator><creatorcontrib>Herbold, E.B. ; Homel, M.A. ; Rubin, M.B. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>A constitutive model is developed for dry granular materials that smoothly transitions across a wide range of pressures and temperatures. This model handles large deformations and is thermomechanically consistent. Ideas from critical-state soil mechanics, which model granular media at relatively low pressure via a breakage model, are combined with an equation of state for shock-loaded solids to investigate the compaction of initially unconsolidated brittle granular materials. The resulting constitutive equations provide a fully-coupled model containing a natural transition between granular and solid states through the Helmholtz free energy. The model is calibrated to data with a wide range of pressures and strain rates for Ottawa sand and silica and predictions of the model are compared with static compaction, penetration, and shock-loading results. The difference in Hugoniot temperatures between this calibrated model and a “snow-plow” model are negligible for pressures greater than 8 GPa; well below incipient melting.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2019.103813</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Constitutive equations ; Constitutive model ; Constitutive models ; Constitutive relationships ; Critical state ; ENGINEERING ; Equations of state ; Free energy ; GEOSCIENCES ; Granular material ; Granular materials ; Granular media ; Low pressure ; Mathematical models ; MATHEMATICS AND COMPUTING ; Shock loading ; Silicon dioxide ; Soil compaction ; Soil mechanics ; Thermomechanical ; Thermomechanical analysis</subject><ispartof>Journal of the mechanics and physics of solids, 2020-04, Vol.137 (C), p.103813, Article 103813</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3</citedby><cites>FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1579270$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Herbold, E.B.</creatorcontrib><creatorcontrib>Homel, M.A.</creatorcontrib><creatorcontrib>Rubin, M.B.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>A thermomechanical breakage model for shock-loaded granular media</title><title>Journal of the mechanics and physics of solids</title><description>A constitutive model is developed for dry granular materials that smoothly transitions across a wide range of pressures and temperatures. This model handles large deformations and is thermomechanically consistent. Ideas from critical-state soil mechanics, which model granular media at relatively low pressure via a breakage model, are combined with an equation of state for shock-loaded solids to investigate the compaction of initially unconsolidated brittle granular materials. The resulting constitutive equations provide a fully-coupled model containing a natural transition between granular and solid states through the Helmholtz free energy. The model is calibrated to data with a wide range of pressures and strain rates for Ottawa sand and silica and predictions of the model are compared with static compaction, penetration, and shock-loading results. The difference in Hugoniot temperatures between this calibrated model and a “snow-plow” model are negligible for pressures greater than 8 GPa; well below incipient melting.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Constitutive equations</subject><subject>Constitutive model</subject><subject>Constitutive models</subject><subject>Constitutive relationships</subject><subject>Critical state</subject><subject>ENGINEERING</subject><subject>Equations of state</subject><subject>Free energy</subject><subject>GEOSCIENCES</subject><subject>Granular material</subject><subject>Granular materials</subject><subject>Granular media</subject><subject>Low pressure</subject><subject>Mathematical models</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Shock loading</subject><subject>Silicon dioxide</subject><subject>Soil compaction</subject><subject>Soil mechanics</subject><subject>Thermomechanical</subject><subject>Thermomechanical analysis</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeg59T9SnYXvJTiFxS86HmZbCZt0iRbd1PBf29CPHsaGN53eOYh5JbRFaMsf2hWTXeMK06ZGRdCM3FGFkwrkUql-TlZUMp5mlGTX5KrGBtKaUYVW5D1Ohn2GDrfodtDXztokyIgHGCHSedLbJPKhyTuvTukrYcSy2QXoD-1EJIOyxquyUUFbcSbv7kkn89PH5vXdPv-8rZZb1MnjBlSkBmtmIaSKwnaFTyjhaRKGiXRGClYZQrpgBe5Rk4LXkmVK62KkhUMKgdiSe7muz4OtY2uHkZi5_se3WBZpgxXdAzdz6Fj8F8njINt_Cn0I5flQmljhOFTis8pF3yMASt7DHUH4ccyaieftrGTTzv5tLPPsfQ4l3B88rvGMDFg70YHYUIoff1f_RfzB30A</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Herbold, E.B.</creator><creator>Homel, M.A.</creator><creator>Rubin, M.B.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>202004</creationdate><title>A thermomechanical breakage model for shock-loaded granular media</title><author>Herbold, E.B. ; Homel, M.A. ; Rubin, M.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Constitutive equations</topic><topic>Constitutive model</topic><topic>Constitutive models</topic><topic>Constitutive relationships</topic><topic>Critical state</topic><topic>ENGINEERING</topic><topic>Equations of state</topic><topic>Free energy</topic><topic>GEOSCIENCES</topic><topic>Granular material</topic><topic>Granular materials</topic><topic>Granular media</topic><topic>Low pressure</topic><topic>Mathematical models</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Shock loading</topic><topic>Silicon dioxide</topic><topic>Soil compaction</topic><topic>Soil mechanics</topic><topic>Thermomechanical</topic><topic>Thermomechanical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herbold, E.B.</creatorcontrib><creatorcontrib>Homel, M.A.</creatorcontrib><creatorcontrib>Rubin, M.B.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herbold, E.B.</au><au>Homel, M.A.</au><au>Rubin, M.B.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermomechanical breakage model for shock-loaded granular media</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2020-04</date><risdate>2020</risdate><volume>137</volume><issue>C</issue><spage>103813</spage><pages>103813-</pages><artnum>103813</artnum><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>A constitutive model is developed for dry granular materials that smoothly transitions across a wide range of pressures and temperatures. This model handles large deformations and is thermomechanically consistent. Ideas from critical-state soil mechanics, which model granular media at relatively low pressure via a breakage model, are combined with an equation of state for shock-loaded solids to investigate the compaction of initially unconsolidated brittle granular materials. The resulting constitutive equations provide a fully-coupled model containing a natural transition between granular and solid states through the Helmholtz free energy. The model is calibrated to data with a wide range of pressures and strain rates for Ottawa sand and silica and predictions of the model are compared with static compaction, penetration, and shock-loading results. The difference in Hugoniot temperatures between this calibrated model and a “snow-plow” model are negligible for pressures greater than 8 GPa; well below incipient melting.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2019.103813</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2020-04, Vol.137 (C), p.103813, Article 103813
issn 0022-5096
1873-4782
language eng
recordid cdi_osti_scitechconnect_1579270
source Elsevier
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Constitutive equations
Constitutive model
Constitutive models
Constitutive relationships
Critical state
ENGINEERING
Equations of state
Free energy
GEOSCIENCES
Granular material
Granular materials
Granular media
Low pressure
Mathematical models
MATHEMATICS AND COMPUTING
Shock loading
Silicon dioxide
Soil compaction
Soil mechanics
Thermomechanical
Thermomechanical analysis
title A thermomechanical breakage model for shock-loaded granular media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermomechanical%20breakage%20model%20for%20shock-loaded%20granular%20media&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Herbold,%20E.B.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-04&rft.volume=137&rft.issue=C&rft.spage=103813&rft.pages=103813-&rft.artnum=103813&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2019.103813&rft_dat=%3Cproquest_osti_%3E2378993920%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2378993920&rft_id=info:pmid/&rfr_iscdi=true