Loading…
A thermomechanical breakage model for shock-loaded granular media
A constitutive model is developed for dry granular materials that smoothly transitions across a wide range of pressures and temperatures. This model handles large deformations and is thermomechanically consistent. Ideas from critical-state soil mechanics, which model granular media at relatively low...
Saved in:
Published in: | Journal of the mechanics and physics of solids 2020-04, Vol.137 (C), p.103813, Article 103813 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3 |
container_end_page | |
container_issue | C |
container_start_page | 103813 |
container_title | Journal of the mechanics and physics of solids |
container_volume | 137 |
creator | Herbold, E.B. Homel, M.A. Rubin, M.B. |
description | A constitutive model is developed for dry granular materials that smoothly transitions across a wide range of pressures and temperatures. This model handles large deformations and is thermomechanically consistent. Ideas from critical-state soil mechanics, which model granular media at relatively low pressure via a breakage model, are combined with an equation of state for shock-loaded solids to investigate the compaction of initially unconsolidated brittle granular materials. The resulting constitutive equations provide a fully-coupled model containing a natural transition between granular and solid states through the Helmholtz free energy. The model is calibrated to data with a wide range of pressures and strain rates for Ottawa sand and silica and predictions of the model are compared with static compaction, penetration, and shock-loading results. The difference in Hugoniot temperatures between this calibrated model and a “snow-plow” model are negligible for pressures greater than 8 GPa; well below incipient melting. |
doi_str_mv | 10.1016/j.jmps.2019.103813 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1579270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509619306362</els_id><sourcerecordid>2378993920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeg59T9SnYXvJTiFxS86HmZbCZt0iRbd1PBf29CPHsaGN53eOYh5JbRFaMsf2hWTXeMK06ZGRdCM3FGFkwrkUql-TlZUMp5mlGTX5KrGBtKaUYVW5D1Ohn2GDrfodtDXztokyIgHGCHSedLbJPKhyTuvTukrYcSy2QXoD-1EJIOyxquyUUFbcSbv7kkn89PH5vXdPv-8rZZb1MnjBlSkBmtmIaSKwnaFTyjhaRKGiXRGClYZQrpgBe5Rk4LXkmVK62KkhUMKgdiSe7muz4OtY2uHkZi5_se3WBZpgxXdAzdz6Fj8F8njINt_Cn0I5flQmljhOFTis8pF3yMASt7DHUH4ccyaieftrGTTzv5tLPPsfQ4l3B88rvGMDFg70YHYUIoff1f_RfzB30A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378993920</pqid></control><display><type>article</type><title>A thermomechanical breakage model for shock-loaded granular media</title><source>Elsevier</source><creator>Herbold, E.B. ; Homel, M.A. ; Rubin, M.B.</creator><creatorcontrib>Herbold, E.B. ; Homel, M.A. ; Rubin, M.B. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>A constitutive model is developed for dry granular materials that smoothly transitions across a wide range of pressures and temperatures. This model handles large deformations and is thermomechanically consistent. Ideas from critical-state soil mechanics, which model granular media at relatively low pressure via a breakage model, are combined with an equation of state for shock-loaded solids to investigate the compaction of initially unconsolidated brittle granular materials. The resulting constitutive equations provide a fully-coupled model containing a natural transition between granular and solid states through the Helmholtz free energy. The model is calibrated to data with a wide range of pressures and strain rates for Ottawa sand and silica and predictions of the model are compared with static compaction, penetration, and shock-loading results. The difference in Hugoniot temperatures between this calibrated model and a “snow-plow” model are negligible for pressures greater than 8 GPa; well below incipient melting.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2019.103813</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Constitutive equations ; Constitutive model ; Constitutive models ; Constitutive relationships ; Critical state ; ENGINEERING ; Equations of state ; Free energy ; GEOSCIENCES ; Granular material ; Granular materials ; Granular media ; Low pressure ; Mathematical models ; MATHEMATICS AND COMPUTING ; Shock loading ; Silicon dioxide ; Soil compaction ; Soil mechanics ; Thermomechanical ; Thermomechanical analysis</subject><ispartof>Journal of the mechanics and physics of solids, 2020-04, Vol.137 (C), p.103813, Article 103813</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3</citedby><cites>FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1579270$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Herbold, E.B.</creatorcontrib><creatorcontrib>Homel, M.A.</creatorcontrib><creatorcontrib>Rubin, M.B.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>A thermomechanical breakage model for shock-loaded granular media</title><title>Journal of the mechanics and physics of solids</title><description>A constitutive model is developed for dry granular materials that smoothly transitions across a wide range of pressures and temperatures. This model handles large deformations and is thermomechanically consistent. Ideas from critical-state soil mechanics, which model granular media at relatively low pressure via a breakage model, are combined with an equation of state for shock-loaded solids to investigate the compaction of initially unconsolidated brittle granular materials. The resulting constitutive equations provide a fully-coupled model containing a natural transition between granular and solid states through the Helmholtz free energy. The model is calibrated to data with a wide range of pressures and strain rates for Ottawa sand and silica and predictions of the model are compared with static compaction, penetration, and shock-loading results. The difference in Hugoniot temperatures between this calibrated model and a “snow-plow” model are negligible for pressures greater than 8 GPa; well below incipient melting.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Constitutive equations</subject><subject>Constitutive model</subject><subject>Constitutive models</subject><subject>Constitutive relationships</subject><subject>Critical state</subject><subject>ENGINEERING</subject><subject>Equations of state</subject><subject>Free energy</subject><subject>GEOSCIENCES</subject><subject>Granular material</subject><subject>Granular materials</subject><subject>Granular media</subject><subject>Low pressure</subject><subject>Mathematical models</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Shock loading</subject><subject>Silicon dioxide</subject><subject>Soil compaction</subject><subject>Soil mechanics</subject><subject>Thermomechanical</subject><subject>Thermomechanical analysis</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeg59T9SnYXvJTiFxS86HmZbCZt0iRbd1PBf29CPHsaGN53eOYh5JbRFaMsf2hWTXeMK06ZGRdCM3FGFkwrkUql-TlZUMp5mlGTX5KrGBtKaUYVW5D1Ohn2GDrfodtDXztokyIgHGCHSedLbJPKhyTuvTukrYcSy2QXoD-1EJIOyxquyUUFbcSbv7kkn89PH5vXdPv-8rZZb1MnjBlSkBmtmIaSKwnaFTyjhaRKGiXRGClYZQrpgBe5Rk4LXkmVK62KkhUMKgdiSe7muz4OtY2uHkZi5_se3WBZpgxXdAzdz6Fj8F8njINt_Cn0I5flQmljhOFTis8pF3yMASt7DHUH4ccyaieftrGTTzv5tLPPsfQ4l3B88rvGMDFg70YHYUIoff1f_RfzB30A</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Herbold, E.B.</creator><creator>Homel, M.A.</creator><creator>Rubin, M.B.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>202004</creationdate><title>A thermomechanical breakage model for shock-loaded granular media</title><author>Herbold, E.B. ; Homel, M.A. ; Rubin, M.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Constitutive equations</topic><topic>Constitutive model</topic><topic>Constitutive models</topic><topic>Constitutive relationships</topic><topic>Critical state</topic><topic>ENGINEERING</topic><topic>Equations of state</topic><topic>Free energy</topic><topic>GEOSCIENCES</topic><topic>Granular material</topic><topic>Granular materials</topic><topic>Granular media</topic><topic>Low pressure</topic><topic>Mathematical models</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Shock loading</topic><topic>Silicon dioxide</topic><topic>Soil compaction</topic><topic>Soil mechanics</topic><topic>Thermomechanical</topic><topic>Thermomechanical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herbold, E.B.</creatorcontrib><creatorcontrib>Homel, M.A.</creatorcontrib><creatorcontrib>Rubin, M.B.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herbold, E.B.</au><au>Homel, M.A.</au><au>Rubin, M.B.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermomechanical breakage model for shock-loaded granular media</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2020-04</date><risdate>2020</risdate><volume>137</volume><issue>C</issue><spage>103813</spage><pages>103813-</pages><artnum>103813</artnum><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>A constitutive model is developed for dry granular materials that smoothly transitions across a wide range of pressures and temperatures. This model handles large deformations and is thermomechanically consistent. Ideas from critical-state soil mechanics, which model granular media at relatively low pressure via a breakage model, are combined with an equation of state for shock-loaded solids to investigate the compaction of initially unconsolidated brittle granular materials. The resulting constitutive equations provide a fully-coupled model containing a natural transition between granular and solid states through the Helmholtz free energy. The model is calibrated to data with a wide range of pressures and strain rates for Ottawa sand and silica and predictions of the model are compared with static compaction, penetration, and shock-loading results. The difference in Hugoniot temperatures between this calibrated model and a “snow-plow” model are negligible for pressures greater than 8 GPa; well below incipient melting.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2019.103813</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5096 |
ispartof | Journal of the mechanics and physics of solids, 2020-04, Vol.137 (C), p.103813, Article 103813 |
issn | 0022-5096 1873-4782 |
language | eng |
recordid | cdi_osti_scitechconnect_1579270 |
source | Elsevier |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Constitutive equations Constitutive model Constitutive models Constitutive relationships Critical state ENGINEERING Equations of state Free energy GEOSCIENCES Granular material Granular materials Granular media Low pressure Mathematical models MATHEMATICS AND COMPUTING Shock loading Silicon dioxide Soil compaction Soil mechanics Thermomechanical Thermomechanical analysis |
title | A thermomechanical breakage model for shock-loaded granular media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermomechanical%20breakage%20model%20for%20shock-loaded%20granular%20media&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Herbold,%20E.B.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-04&rft.volume=137&rft.issue=C&rft.spage=103813&rft.pages=103813-&rft.artnum=103813&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2019.103813&rft_dat=%3Cproquest_osti_%3E2378993920%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-a450f18ad274a8cb250b4074974e99431f9b4ca2b68e20b2f476787bd1b1afca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2378993920&rft_id=info:pmid/&rfr_iscdi=true |