Loading…
Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data
Leaf area index (LAI) is a key variable for characterizing crop growth conditions and estimating crop productivity. Despite continuing efforts to develop LAI estimation algorithms, LAI datasets still need improvement at spatial and temporal resolutions to meet the requirements of agricultural applic...
Saved in:
Published in: | Remote sensing of environment 2020-03, Vol.239 (C), p.111615, Article 111615 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213 |
container_end_page | |
container_issue | C |
container_start_page | 111615 |
container_title | Remote sensing of environment |
container_volume | 239 |
creator | Kimm, Hyungsuk Guan, Kaiyu Jiang, Chongya Peng, Bin Gentry, Laura F. Wilkin, Scott C. Wang, Sibo Cai, Yaping Bernacchi, Carl J. Peng, Jian Luo, Yunan |
description | Leaf area index (LAI) is a key variable for characterizing crop growth conditions and estimating crop productivity. Despite continuing efforts to develop LAI estimation algorithms, LAI datasets still need improvement at spatial and temporal resolutions to meet the requirements of agricultural applications. Advancements in data fusion technique and the emergence of new satellite data provide opportunities for LAI data at higher resolutions in both space and time. In this study, we derived new LAI estimations by leveraging novel satellite remote sensing datasets, STAIR fusion (MODIS-Landsat fusion) and Planet Labs' CubeSat data (through a reprocessed pipeline) for a typical agricultural landscape in the U.S. Corn Belt. The STAIR fused data and our reprocessed CubeSat data have both fine spatial resolutions (30 m and 3.125 m, respectively) and high frequencies (daily for both). To reliably estimate LAI from these advanced satellite datasets, we used two methods: inversion of a radiative transfer model (RTM), and empirical relationship with vegetation index (VI) calibrated from field measured LAI. Compared to the ground-truth LAI collected at 36 sites across the study region, reliable approximations were achieved by both LAI estimations based on PROSAIL RTM (STAIR: R2 = 0.69 and root mean squared error (RMSE) = 1.12 (m2 m−2), CubeSat: R2 = 0.76 and RMSE = 1.09 (m2 m−2)), and LAI estimations based on Green Wide Dynamic Range Vegetation Index (GrWDRVI) (STAIR: R2 = 0.75, RMSE = 1.10 (m2 m−2), CubeSat: R2 = 0.76, RMSE = 1.08 (m2 m−2), where validation ground-truth is independent from calibration data). Newly estimated high-resolution LAI data were aggregated at 500 m resolution and compared with MODIS and VIIRS LAI products, revealing substantial uncertainties and biases in these two products. We also demonstrated phenology stage estimation at fine spatial resolutions based on our high-frequency LAI data. The proposed LAI estimation methods at both high spatial resolution and temporal frequency can be applied to the entire U.S. Corn Belt and provide significant advancement to crop monitoring and precision agriculture.
•High-spatiotemporal-resolution LAI is achieved from MODIS-Landsat Fusion and CubeSat.•Both empirical and process-based LAI estimations achieve high performance.•The MODIS and VIIRS LAI products show large bias for cropland. |
doi_str_mv | 10.1016/j.rse.2019.111615 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1580764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425719306352</els_id><sourcerecordid>2377331038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EEkvhAbhZcE7wrJPYEaey5U-llUBse7YcZ7zrVWovtlPRt-CRcRTO-DKS5_eNP89HyFtgNTDoPpzrmLDeMuhrAOigfUY2IEVfMcGa52TDGG-qZtuKl-RVSmfGoJUCNuTPDUb36PyRntzxVKWLzi5kfLiEqKcqYgrTXG48nVBbqiNq6vyIv6kNkepjDGhCekpFkUqD5hPS-_pQ012Inn7CKdM5LdN_TNpjpns9JLqbBzzoTLUf6eHu-vYntQUqb4w669fkhdVTwjf_6hW5__L5bvet2n__eru73leG922uettZLS0Hq0c5jCCkGExvh660edc2IwdTju4MNFygRLS66WTbS2S83wK_Iu_WuSFlp5JxGc3JBO_RZFWWw0TXFOj9Cl1i-DVjyuoc5uiLL7XlQnAOjMtCwUqZGFKKaNUlugcdnxQwtaSjzqqko5Z01JpO0XxcNVj--OgwLhbQGxxdXByMwf1H_RdjvpiH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377331038</pqid></control><display><type>article</type><title>Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data</title><source>ScienceDirect Freedom Collection</source><creator>Kimm, Hyungsuk ; Guan, Kaiyu ; Jiang, Chongya ; Peng, Bin ; Gentry, Laura F. ; Wilkin, Scott C. ; Wang, Sibo ; Cai, Yaping ; Bernacchi, Carl J. ; Peng, Jian ; Luo, Yunan</creator><creatorcontrib>Kimm, Hyungsuk ; Guan, Kaiyu ; Jiang, Chongya ; Peng, Bin ; Gentry, Laura F. ; Wilkin, Scott C. ; Wang, Sibo ; Cai, Yaping ; Bernacchi, Carl J. ; Peng, Jian ; Luo, Yunan</creatorcontrib><description>Leaf area index (LAI) is a key variable for characterizing crop growth conditions and estimating crop productivity. Despite continuing efforts to develop LAI estimation algorithms, LAI datasets still need improvement at spatial and temporal resolutions to meet the requirements of agricultural applications. Advancements in data fusion technique and the emergence of new satellite data provide opportunities for LAI data at higher resolutions in both space and time. In this study, we derived new LAI estimations by leveraging novel satellite remote sensing datasets, STAIR fusion (MODIS-Landsat fusion) and Planet Labs' CubeSat data (through a reprocessed pipeline) for a typical agricultural landscape in the U.S. Corn Belt. The STAIR fused data and our reprocessed CubeSat data have both fine spatial resolutions (30 m and 3.125 m, respectively) and high frequencies (daily for both). To reliably estimate LAI from these advanced satellite datasets, we used two methods: inversion of a radiative transfer model (RTM), and empirical relationship with vegetation index (VI) calibrated from field measured LAI. Compared to the ground-truth LAI collected at 36 sites across the study region, reliable approximations were achieved by both LAI estimations based on PROSAIL RTM (STAIR: R2 = 0.69 and root mean squared error (RMSE) = 1.12 (m2 m−2), CubeSat: R2 = 0.76 and RMSE = 1.09 (m2 m−2)), and LAI estimations based on Green Wide Dynamic Range Vegetation Index (GrWDRVI) (STAIR: R2 = 0.75, RMSE = 1.10 (m2 m−2), CubeSat: R2 = 0.76, RMSE = 1.08 (m2 m−2), where validation ground-truth is independent from calibration data). Newly estimated high-resolution LAI data were aggregated at 500 m resolution and compared with MODIS and VIIRS LAI products, revealing substantial uncertainties and biases in these two products. We also demonstrated phenology stage estimation at fine spatial resolutions based on our high-frequency LAI data. The proposed LAI estimation methods at both high spatial resolution and temporal frequency can be applied to the entire U.S. Corn Belt and provide significant advancement to crop monitoring and precision agriculture.
•High-spatiotemporal-resolution LAI is achieved from MODIS-Landsat Fusion and CubeSat.•Both empirical and process-based LAI estimations achieve high performance.•The MODIS and VIIRS LAI products show large bias for cropland.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2019.111615</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Agricultural ecosystems ; Agricultural land ; Agriculture ; Algorithms ; Calibration ; Camera network ; Corn ; Corn belt ; Crop growth ; Crop production ; Crops ; CubeSat ; Data integration ; Datasets ; Frequency dependence ; Growth conditions ; High resolution ; Land use ; Landsat ; Landsat satellites ; Leaf area ; Leaf area index ; MODIS ; Planet Labs ; Planets ; Precision farming ; PROSAIL ; Radiative transfer ; Remote sensing ; Root-mean-square errors ; Satellite data ; Satellites ; Spatial discrimination ; Spatial resolution ; STAIR fusion ; Vegetation ; Vegetation index</subject><ispartof>Remote sensing of environment, 2020-03, Vol.239 (C), p.111615, Article 111615</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier BV Mar 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213</citedby><cites>FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213</cites><orcidid>0000-0002-1660-7320 ; 0000-0001-7728-6412 ; 0000-0002-3499-6382 ; 0000-0001-8189-0874 ; 0000-0002-7284-3010 ; 0000-0002-7601-8886 ; 0000000234996382 ; 0000000216607320 ; 0000000276018886 ; 0000000177286412 ; 0000000181890874 ; 0000000272843010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1580764$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimm, Hyungsuk</creatorcontrib><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Jiang, Chongya</creatorcontrib><creatorcontrib>Peng, Bin</creatorcontrib><creatorcontrib>Gentry, Laura F.</creatorcontrib><creatorcontrib>Wilkin, Scott C.</creatorcontrib><creatorcontrib>Wang, Sibo</creatorcontrib><creatorcontrib>Cai, Yaping</creatorcontrib><creatorcontrib>Bernacchi, Carl J.</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Luo, Yunan</creatorcontrib><title>Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data</title><title>Remote sensing of environment</title><description>Leaf area index (LAI) is a key variable for characterizing crop growth conditions and estimating crop productivity. Despite continuing efforts to develop LAI estimation algorithms, LAI datasets still need improvement at spatial and temporal resolutions to meet the requirements of agricultural applications. Advancements in data fusion technique and the emergence of new satellite data provide opportunities for LAI data at higher resolutions in both space and time. In this study, we derived new LAI estimations by leveraging novel satellite remote sensing datasets, STAIR fusion (MODIS-Landsat fusion) and Planet Labs' CubeSat data (through a reprocessed pipeline) for a typical agricultural landscape in the U.S. Corn Belt. The STAIR fused data and our reprocessed CubeSat data have both fine spatial resolutions (30 m and 3.125 m, respectively) and high frequencies (daily for both). To reliably estimate LAI from these advanced satellite datasets, we used two methods: inversion of a radiative transfer model (RTM), and empirical relationship with vegetation index (VI) calibrated from field measured LAI. Compared to the ground-truth LAI collected at 36 sites across the study region, reliable approximations were achieved by both LAI estimations based on PROSAIL RTM (STAIR: R2 = 0.69 and root mean squared error (RMSE) = 1.12 (m2 m−2), CubeSat: R2 = 0.76 and RMSE = 1.09 (m2 m−2)), and LAI estimations based on Green Wide Dynamic Range Vegetation Index (GrWDRVI) (STAIR: R2 = 0.75, RMSE = 1.10 (m2 m−2), CubeSat: R2 = 0.76, RMSE = 1.08 (m2 m−2), where validation ground-truth is independent from calibration data). Newly estimated high-resolution LAI data were aggregated at 500 m resolution and compared with MODIS and VIIRS LAI products, revealing substantial uncertainties and biases in these two products. We also demonstrated phenology stage estimation at fine spatial resolutions based on our high-frequency LAI data. The proposed LAI estimation methods at both high spatial resolution and temporal frequency can be applied to the entire U.S. Corn Belt and provide significant advancement to crop monitoring and precision agriculture.
•High-spatiotemporal-resolution LAI is achieved from MODIS-Landsat Fusion and CubeSat.•Both empirical and process-based LAI estimations achieve high performance.•The MODIS and VIIRS LAI products show large bias for cropland.</description><subject>Agricultural ecosystems</subject><subject>Agricultural land</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Calibration</subject><subject>Camera network</subject><subject>Corn</subject><subject>Corn belt</subject><subject>Crop growth</subject><subject>Crop production</subject><subject>Crops</subject><subject>CubeSat</subject><subject>Data integration</subject><subject>Datasets</subject><subject>Frequency dependence</subject><subject>Growth conditions</subject><subject>High resolution</subject><subject>Land use</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>MODIS</subject><subject>Planet Labs</subject><subject>Planets</subject><subject>Precision farming</subject><subject>PROSAIL</subject><subject>Radiative transfer</subject><subject>Remote sensing</subject><subject>Root-mean-square errors</subject><subject>Satellite data</subject><subject>Satellites</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>STAIR fusion</subject><subject>Vegetation</subject><subject>Vegetation index</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxi0EEkvhAbhZcE7wrJPYEaey5U-llUBse7YcZ7zrVWovtlPRt-CRcRTO-DKS5_eNP89HyFtgNTDoPpzrmLDeMuhrAOigfUY2IEVfMcGa52TDGG-qZtuKl-RVSmfGoJUCNuTPDUb36PyRntzxVKWLzi5kfLiEqKcqYgrTXG48nVBbqiNq6vyIv6kNkepjDGhCekpFkUqD5hPS-_pQ012Inn7CKdM5LdN_TNpjpns9JLqbBzzoTLUf6eHu-vYntQUqb4w669fkhdVTwjf_6hW5__L5bvet2n__eru73leG922uettZLS0Hq0c5jCCkGExvh660edc2IwdTju4MNFygRLS66WTbS2S83wK_Iu_WuSFlp5JxGc3JBO_RZFWWw0TXFOj9Cl1i-DVjyuoc5uiLL7XlQnAOjMtCwUqZGFKKaNUlugcdnxQwtaSjzqqko5Z01JpO0XxcNVj--OgwLhbQGxxdXByMwf1H_RdjvpiH</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Kimm, Hyungsuk</creator><creator>Guan, Kaiyu</creator><creator>Jiang, Chongya</creator><creator>Peng, Bin</creator><creator>Gentry, Laura F.</creator><creator>Wilkin, Scott C.</creator><creator>Wang, Sibo</creator><creator>Cai, Yaping</creator><creator>Bernacchi, Carl J.</creator><creator>Peng, Jian</creator><creator>Luo, Yunan</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1660-7320</orcidid><orcidid>https://orcid.org/0000-0001-7728-6412</orcidid><orcidid>https://orcid.org/0000-0002-3499-6382</orcidid><orcidid>https://orcid.org/0000-0001-8189-0874</orcidid><orcidid>https://orcid.org/0000-0002-7284-3010</orcidid><orcidid>https://orcid.org/0000-0002-7601-8886</orcidid><orcidid>https://orcid.org/0000000234996382</orcidid><orcidid>https://orcid.org/0000000216607320</orcidid><orcidid>https://orcid.org/0000000276018886</orcidid><orcidid>https://orcid.org/0000000177286412</orcidid><orcidid>https://orcid.org/0000000181890874</orcidid><orcidid>https://orcid.org/0000000272843010</orcidid></search><sort><creationdate>20200315</creationdate><title>Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data</title><author>Kimm, Hyungsuk ; Guan, Kaiyu ; Jiang, Chongya ; Peng, Bin ; Gentry, Laura F. ; Wilkin, Scott C. ; Wang, Sibo ; Cai, Yaping ; Bernacchi, Carl J. ; Peng, Jian ; Luo, Yunan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural ecosystems</topic><topic>Agricultural land</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Calibration</topic><topic>Camera network</topic><topic>Corn</topic><topic>Corn belt</topic><topic>Crop growth</topic><topic>Crop production</topic><topic>Crops</topic><topic>CubeSat</topic><topic>Data integration</topic><topic>Datasets</topic><topic>Frequency dependence</topic><topic>Growth conditions</topic><topic>High resolution</topic><topic>Land use</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>MODIS</topic><topic>Planet Labs</topic><topic>Planets</topic><topic>Precision farming</topic><topic>PROSAIL</topic><topic>Radiative transfer</topic><topic>Remote sensing</topic><topic>Root-mean-square errors</topic><topic>Satellite data</topic><topic>Satellites</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>STAIR fusion</topic><topic>Vegetation</topic><topic>Vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimm, Hyungsuk</creatorcontrib><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Jiang, Chongya</creatorcontrib><creatorcontrib>Peng, Bin</creatorcontrib><creatorcontrib>Gentry, Laura F.</creatorcontrib><creatorcontrib>Wilkin, Scott C.</creatorcontrib><creatorcontrib>Wang, Sibo</creatorcontrib><creatorcontrib>Cai, Yaping</creatorcontrib><creatorcontrib>Bernacchi, Carl J.</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Luo, Yunan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimm, Hyungsuk</au><au>Guan, Kaiyu</au><au>Jiang, Chongya</au><au>Peng, Bin</au><au>Gentry, Laura F.</au><au>Wilkin, Scott C.</au><au>Wang, Sibo</au><au>Cai, Yaping</au><au>Bernacchi, Carl J.</au><au>Peng, Jian</au><au>Luo, Yunan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data</atitle><jtitle>Remote sensing of environment</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>239</volume><issue>C</issue><spage>111615</spage><pages>111615-</pages><artnum>111615</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Leaf area index (LAI) is a key variable for characterizing crop growth conditions and estimating crop productivity. Despite continuing efforts to develop LAI estimation algorithms, LAI datasets still need improvement at spatial and temporal resolutions to meet the requirements of agricultural applications. Advancements in data fusion technique and the emergence of new satellite data provide opportunities for LAI data at higher resolutions in both space and time. In this study, we derived new LAI estimations by leveraging novel satellite remote sensing datasets, STAIR fusion (MODIS-Landsat fusion) and Planet Labs' CubeSat data (through a reprocessed pipeline) for a typical agricultural landscape in the U.S. Corn Belt. The STAIR fused data and our reprocessed CubeSat data have both fine spatial resolutions (30 m and 3.125 m, respectively) and high frequencies (daily for both). To reliably estimate LAI from these advanced satellite datasets, we used two methods: inversion of a radiative transfer model (RTM), and empirical relationship with vegetation index (VI) calibrated from field measured LAI. Compared to the ground-truth LAI collected at 36 sites across the study region, reliable approximations were achieved by both LAI estimations based on PROSAIL RTM (STAIR: R2 = 0.69 and root mean squared error (RMSE) = 1.12 (m2 m−2), CubeSat: R2 = 0.76 and RMSE = 1.09 (m2 m−2)), and LAI estimations based on Green Wide Dynamic Range Vegetation Index (GrWDRVI) (STAIR: R2 = 0.75, RMSE = 1.10 (m2 m−2), CubeSat: R2 = 0.76, RMSE = 1.08 (m2 m−2), where validation ground-truth is independent from calibration data). Newly estimated high-resolution LAI data were aggregated at 500 m resolution and compared with MODIS and VIIRS LAI products, revealing substantial uncertainties and biases in these two products. We also demonstrated phenology stage estimation at fine spatial resolutions based on our high-frequency LAI data. The proposed LAI estimation methods at both high spatial resolution and temporal frequency can be applied to the entire U.S. Corn Belt and provide significant advancement to crop monitoring and precision agriculture.
•High-spatiotemporal-resolution LAI is achieved from MODIS-Landsat Fusion and CubeSat.•Both empirical and process-based LAI estimations achieve high performance.•The MODIS and VIIRS LAI products show large bias for cropland.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2019.111615</doi><orcidid>https://orcid.org/0000-0002-1660-7320</orcidid><orcidid>https://orcid.org/0000-0001-7728-6412</orcidid><orcidid>https://orcid.org/0000-0002-3499-6382</orcidid><orcidid>https://orcid.org/0000-0001-8189-0874</orcidid><orcidid>https://orcid.org/0000-0002-7284-3010</orcidid><orcidid>https://orcid.org/0000-0002-7601-8886</orcidid><orcidid>https://orcid.org/0000000234996382</orcidid><orcidid>https://orcid.org/0000000216607320</orcidid><orcidid>https://orcid.org/0000000276018886</orcidid><orcidid>https://orcid.org/0000000177286412</orcidid><orcidid>https://orcid.org/0000000181890874</orcidid><orcidid>https://orcid.org/0000000272843010</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2020-03, Vol.239 (C), p.111615, Article 111615 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_osti_scitechconnect_1580764 |
source | ScienceDirect Freedom Collection |
subjects | Agricultural ecosystems Agricultural land Agriculture Algorithms Calibration Camera network Corn Corn belt Crop growth Crop production Crops CubeSat Data integration Datasets Frequency dependence Growth conditions High resolution Land use Landsat Landsat satellites Leaf area Leaf area index MODIS Planet Labs Planets Precision farming PROSAIL Radiative transfer Remote sensing Root-mean-square errors Satellite data Satellites Spatial discrimination Spatial resolution STAIR fusion Vegetation Vegetation index |
title | Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deriving%20high-spatiotemporal-resolution%20leaf%20area%20index%20for%20agroecosystems%20in%20the%20U.S.%20Corn%20Belt%20using%20Planet%20Labs%20CubeSat%20and%20STAIR%20fusion%20data&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Kimm,%20Hyungsuk&rft.date=2020-03-15&rft.volume=239&rft.issue=C&rft.spage=111615&rft.pages=111615-&rft.artnum=111615&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2019.111615&rft_dat=%3Cproquest_osti_%3E2377331038%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2377331038&rft_id=info:pmid/&rfr_iscdi=true |