Loading…

Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data

Leaf area index (LAI) is a key variable for characterizing crop growth conditions and estimating crop productivity. Despite continuing efforts to develop LAI estimation algorithms, LAI datasets still need improvement at spatial and temporal resolutions to meet the requirements of agricultural applic...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2020-03, Vol.239 (C), p.111615, Article 111615
Main Authors: Kimm, Hyungsuk, Guan, Kaiyu, Jiang, Chongya, Peng, Bin, Gentry, Laura F., Wilkin, Scott C., Wang, Sibo, Cai, Yaping, Bernacchi, Carl J., Peng, Jian, Luo, Yunan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213
cites cdi_FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213
container_end_page
container_issue C
container_start_page 111615
container_title Remote sensing of environment
container_volume 239
creator Kimm, Hyungsuk
Guan, Kaiyu
Jiang, Chongya
Peng, Bin
Gentry, Laura F.
Wilkin, Scott C.
Wang, Sibo
Cai, Yaping
Bernacchi, Carl J.
Peng, Jian
Luo, Yunan
description Leaf area index (LAI) is a key variable for characterizing crop growth conditions and estimating crop productivity. Despite continuing efforts to develop LAI estimation algorithms, LAI datasets still need improvement at spatial and temporal resolutions to meet the requirements of agricultural applications. Advancements in data fusion technique and the emergence of new satellite data provide opportunities for LAI data at higher resolutions in both space and time. In this study, we derived new LAI estimations by leveraging novel satellite remote sensing datasets, STAIR fusion (MODIS-Landsat fusion) and Planet Labs' CubeSat data (through a reprocessed pipeline) for a typical agricultural landscape in the U.S. Corn Belt. The STAIR fused data and our reprocessed CubeSat data have both fine spatial resolutions (30 m and 3.125 m, respectively) and high frequencies (daily for both). To reliably estimate LAI from these advanced satellite datasets, we used two methods: inversion of a radiative transfer model (RTM), and empirical relationship with vegetation index (VI) calibrated from field measured LAI. Compared to the ground-truth LAI collected at 36 sites across the study region, reliable approximations were achieved by both LAI estimations based on PROSAIL RTM (STAIR: R2 = 0.69 and root mean squared error (RMSE) = 1.12 (m2 m−2), CubeSat: R2 = 0.76 and RMSE = 1.09 (m2 m−2)), and LAI estimations based on Green Wide Dynamic Range Vegetation Index (GrWDRVI) (STAIR: R2 = 0.75, RMSE = 1.10 (m2 m−2), CubeSat: R2 = 0.76, RMSE = 1.08 (m2 m−2), where validation ground-truth is independent from calibration data). Newly estimated high-resolution LAI data were aggregated at 500 m resolution and compared with MODIS and VIIRS LAI products, revealing substantial uncertainties and biases in these two products. We also demonstrated phenology stage estimation at fine spatial resolutions based on our high-frequency LAI data. The proposed LAI estimation methods at both high spatial resolution and temporal frequency can be applied to the entire U.S. Corn Belt and provide significant advancement to crop monitoring and precision agriculture. •High-spatiotemporal-resolution LAI is achieved from MODIS-Landsat Fusion and CubeSat.•Both empirical and process-based LAI estimations achieve high performance.•The MODIS and VIIRS LAI products show large bias for cropland.
doi_str_mv 10.1016/j.rse.2019.111615
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1580764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425719306352</els_id><sourcerecordid>2377331038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EEkvhAbhZcE7wrJPYEaey5U-llUBse7YcZ7zrVWovtlPRt-CRcRTO-DKS5_eNP89HyFtgNTDoPpzrmLDeMuhrAOigfUY2IEVfMcGa52TDGG-qZtuKl-RVSmfGoJUCNuTPDUb36PyRntzxVKWLzi5kfLiEqKcqYgrTXG48nVBbqiNq6vyIv6kNkepjDGhCekpFkUqD5hPS-_pQ012Inn7CKdM5LdN_TNpjpns9JLqbBzzoTLUf6eHu-vYntQUqb4w669fkhdVTwjf_6hW5__L5bvet2n__eru73leG922uettZLS0Hq0c5jCCkGExvh660edc2IwdTju4MNFygRLS66WTbS2S83wK_Iu_WuSFlp5JxGc3JBO_RZFWWw0TXFOj9Cl1i-DVjyuoc5uiLL7XlQnAOjMtCwUqZGFKKaNUlugcdnxQwtaSjzqqko5Z01JpO0XxcNVj--OgwLhbQGxxdXByMwf1H_RdjvpiH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377331038</pqid></control><display><type>article</type><title>Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data</title><source>ScienceDirect Freedom Collection</source><creator>Kimm, Hyungsuk ; Guan, Kaiyu ; Jiang, Chongya ; Peng, Bin ; Gentry, Laura F. ; Wilkin, Scott C. ; Wang, Sibo ; Cai, Yaping ; Bernacchi, Carl J. ; Peng, Jian ; Luo, Yunan</creator><creatorcontrib>Kimm, Hyungsuk ; Guan, Kaiyu ; Jiang, Chongya ; Peng, Bin ; Gentry, Laura F. ; Wilkin, Scott C. ; Wang, Sibo ; Cai, Yaping ; Bernacchi, Carl J. ; Peng, Jian ; Luo, Yunan</creatorcontrib><description>Leaf area index (LAI) is a key variable for characterizing crop growth conditions and estimating crop productivity. Despite continuing efforts to develop LAI estimation algorithms, LAI datasets still need improvement at spatial and temporal resolutions to meet the requirements of agricultural applications. Advancements in data fusion technique and the emergence of new satellite data provide opportunities for LAI data at higher resolutions in both space and time. In this study, we derived new LAI estimations by leveraging novel satellite remote sensing datasets, STAIR fusion (MODIS-Landsat fusion) and Planet Labs' CubeSat data (through a reprocessed pipeline) for a typical agricultural landscape in the U.S. Corn Belt. The STAIR fused data and our reprocessed CubeSat data have both fine spatial resolutions (30 m and 3.125 m, respectively) and high frequencies (daily for both). To reliably estimate LAI from these advanced satellite datasets, we used two methods: inversion of a radiative transfer model (RTM), and empirical relationship with vegetation index (VI) calibrated from field measured LAI. Compared to the ground-truth LAI collected at 36 sites across the study region, reliable approximations were achieved by both LAI estimations based on PROSAIL RTM (STAIR: R2 = 0.69 and root mean squared error (RMSE) = 1.12 (m2 m−2), CubeSat: R2 = 0.76 and RMSE = 1.09 (m2 m−2)), and LAI estimations based on Green Wide Dynamic Range Vegetation Index (GrWDRVI) (STAIR: R2 = 0.75, RMSE = 1.10 (m2 m−2), CubeSat: R2 = 0.76, RMSE = 1.08 (m2 m−2), where validation ground-truth is independent from calibration data). Newly estimated high-resolution LAI data were aggregated at 500 m resolution and compared with MODIS and VIIRS LAI products, revealing substantial uncertainties and biases in these two products. We also demonstrated phenology stage estimation at fine spatial resolutions based on our high-frequency LAI data. The proposed LAI estimation methods at both high spatial resolution and temporal frequency can be applied to the entire U.S. Corn Belt and provide significant advancement to crop monitoring and precision agriculture. •High-spatiotemporal-resolution LAI is achieved from MODIS-Landsat Fusion and CubeSat.•Both empirical and process-based LAI estimations achieve high performance.•The MODIS and VIIRS LAI products show large bias for cropland.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2019.111615</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Agricultural ecosystems ; Agricultural land ; Agriculture ; Algorithms ; Calibration ; Camera network ; Corn ; Corn belt ; Crop growth ; Crop production ; Crops ; CubeSat ; Data integration ; Datasets ; Frequency dependence ; Growth conditions ; High resolution ; Land use ; Landsat ; Landsat satellites ; Leaf area ; Leaf area index ; MODIS ; Planet Labs ; Planets ; Precision farming ; PROSAIL ; Radiative transfer ; Remote sensing ; Root-mean-square errors ; Satellite data ; Satellites ; Spatial discrimination ; Spatial resolution ; STAIR fusion ; Vegetation ; Vegetation index</subject><ispartof>Remote sensing of environment, 2020-03, Vol.239 (C), p.111615, Article 111615</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier BV Mar 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213</citedby><cites>FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213</cites><orcidid>0000-0002-1660-7320 ; 0000-0001-7728-6412 ; 0000-0002-3499-6382 ; 0000-0001-8189-0874 ; 0000-0002-7284-3010 ; 0000-0002-7601-8886 ; 0000000234996382 ; 0000000216607320 ; 0000000276018886 ; 0000000177286412 ; 0000000181890874 ; 0000000272843010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1580764$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimm, Hyungsuk</creatorcontrib><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Jiang, Chongya</creatorcontrib><creatorcontrib>Peng, Bin</creatorcontrib><creatorcontrib>Gentry, Laura F.</creatorcontrib><creatorcontrib>Wilkin, Scott C.</creatorcontrib><creatorcontrib>Wang, Sibo</creatorcontrib><creatorcontrib>Cai, Yaping</creatorcontrib><creatorcontrib>Bernacchi, Carl J.</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Luo, Yunan</creatorcontrib><title>Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data</title><title>Remote sensing of environment</title><description>Leaf area index (LAI) is a key variable for characterizing crop growth conditions and estimating crop productivity. Despite continuing efforts to develop LAI estimation algorithms, LAI datasets still need improvement at spatial and temporal resolutions to meet the requirements of agricultural applications. Advancements in data fusion technique and the emergence of new satellite data provide opportunities for LAI data at higher resolutions in both space and time. In this study, we derived new LAI estimations by leveraging novel satellite remote sensing datasets, STAIR fusion (MODIS-Landsat fusion) and Planet Labs' CubeSat data (through a reprocessed pipeline) for a typical agricultural landscape in the U.S. Corn Belt. The STAIR fused data and our reprocessed CubeSat data have both fine spatial resolutions (30 m and 3.125 m, respectively) and high frequencies (daily for both). To reliably estimate LAI from these advanced satellite datasets, we used two methods: inversion of a radiative transfer model (RTM), and empirical relationship with vegetation index (VI) calibrated from field measured LAI. Compared to the ground-truth LAI collected at 36 sites across the study region, reliable approximations were achieved by both LAI estimations based on PROSAIL RTM (STAIR: R2 = 0.69 and root mean squared error (RMSE) = 1.12 (m2 m−2), CubeSat: R2 = 0.76 and RMSE = 1.09 (m2 m−2)), and LAI estimations based on Green Wide Dynamic Range Vegetation Index (GrWDRVI) (STAIR: R2 = 0.75, RMSE = 1.10 (m2 m−2), CubeSat: R2 = 0.76, RMSE = 1.08 (m2 m−2), where validation ground-truth is independent from calibration data). Newly estimated high-resolution LAI data were aggregated at 500 m resolution and compared with MODIS and VIIRS LAI products, revealing substantial uncertainties and biases in these two products. We also demonstrated phenology stage estimation at fine spatial resolutions based on our high-frequency LAI data. The proposed LAI estimation methods at both high spatial resolution and temporal frequency can be applied to the entire U.S. Corn Belt and provide significant advancement to crop monitoring and precision agriculture. •High-spatiotemporal-resolution LAI is achieved from MODIS-Landsat Fusion and CubeSat.•Both empirical and process-based LAI estimations achieve high performance.•The MODIS and VIIRS LAI products show large bias for cropland.</description><subject>Agricultural ecosystems</subject><subject>Agricultural land</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Calibration</subject><subject>Camera network</subject><subject>Corn</subject><subject>Corn belt</subject><subject>Crop growth</subject><subject>Crop production</subject><subject>Crops</subject><subject>CubeSat</subject><subject>Data integration</subject><subject>Datasets</subject><subject>Frequency dependence</subject><subject>Growth conditions</subject><subject>High resolution</subject><subject>Land use</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>MODIS</subject><subject>Planet Labs</subject><subject>Planets</subject><subject>Precision farming</subject><subject>PROSAIL</subject><subject>Radiative transfer</subject><subject>Remote sensing</subject><subject>Root-mean-square errors</subject><subject>Satellite data</subject><subject>Satellites</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>STAIR fusion</subject><subject>Vegetation</subject><subject>Vegetation index</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxi0EEkvhAbhZcE7wrJPYEaey5U-llUBse7YcZ7zrVWovtlPRt-CRcRTO-DKS5_eNP89HyFtgNTDoPpzrmLDeMuhrAOigfUY2IEVfMcGa52TDGG-qZtuKl-RVSmfGoJUCNuTPDUb36PyRntzxVKWLzi5kfLiEqKcqYgrTXG48nVBbqiNq6vyIv6kNkepjDGhCekpFkUqD5hPS-_pQ012Inn7CKdM5LdN_TNpjpns9JLqbBzzoTLUf6eHu-vYntQUqb4w669fkhdVTwjf_6hW5__L5bvet2n__eru73leG922uettZLS0Hq0c5jCCkGExvh660edc2IwdTju4MNFygRLS66WTbS2S83wK_Iu_WuSFlp5JxGc3JBO_RZFWWw0TXFOj9Cl1i-DVjyuoc5uiLL7XlQnAOjMtCwUqZGFKKaNUlugcdnxQwtaSjzqqko5Z01JpO0XxcNVj--OgwLhbQGxxdXByMwf1H_RdjvpiH</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Kimm, Hyungsuk</creator><creator>Guan, Kaiyu</creator><creator>Jiang, Chongya</creator><creator>Peng, Bin</creator><creator>Gentry, Laura F.</creator><creator>Wilkin, Scott C.</creator><creator>Wang, Sibo</creator><creator>Cai, Yaping</creator><creator>Bernacchi, Carl J.</creator><creator>Peng, Jian</creator><creator>Luo, Yunan</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1660-7320</orcidid><orcidid>https://orcid.org/0000-0001-7728-6412</orcidid><orcidid>https://orcid.org/0000-0002-3499-6382</orcidid><orcidid>https://orcid.org/0000-0001-8189-0874</orcidid><orcidid>https://orcid.org/0000-0002-7284-3010</orcidid><orcidid>https://orcid.org/0000-0002-7601-8886</orcidid><orcidid>https://orcid.org/0000000234996382</orcidid><orcidid>https://orcid.org/0000000216607320</orcidid><orcidid>https://orcid.org/0000000276018886</orcidid><orcidid>https://orcid.org/0000000177286412</orcidid><orcidid>https://orcid.org/0000000181890874</orcidid><orcidid>https://orcid.org/0000000272843010</orcidid></search><sort><creationdate>20200315</creationdate><title>Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data</title><author>Kimm, Hyungsuk ; Guan, Kaiyu ; Jiang, Chongya ; Peng, Bin ; Gentry, Laura F. ; Wilkin, Scott C. ; Wang, Sibo ; Cai, Yaping ; Bernacchi, Carl J. ; Peng, Jian ; Luo, Yunan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural ecosystems</topic><topic>Agricultural land</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Calibration</topic><topic>Camera network</topic><topic>Corn</topic><topic>Corn belt</topic><topic>Crop growth</topic><topic>Crop production</topic><topic>Crops</topic><topic>CubeSat</topic><topic>Data integration</topic><topic>Datasets</topic><topic>Frequency dependence</topic><topic>Growth conditions</topic><topic>High resolution</topic><topic>Land use</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>MODIS</topic><topic>Planet Labs</topic><topic>Planets</topic><topic>Precision farming</topic><topic>PROSAIL</topic><topic>Radiative transfer</topic><topic>Remote sensing</topic><topic>Root-mean-square errors</topic><topic>Satellite data</topic><topic>Satellites</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>STAIR fusion</topic><topic>Vegetation</topic><topic>Vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimm, Hyungsuk</creatorcontrib><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Jiang, Chongya</creatorcontrib><creatorcontrib>Peng, Bin</creatorcontrib><creatorcontrib>Gentry, Laura F.</creatorcontrib><creatorcontrib>Wilkin, Scott C.</creatorcontrib><creatorcontrib>Wang, Sibo</creatorcontrib><creatorcontrib>Cai, Yaping</creatorcontrib><creatorcontrib>Bernacchi, Carl J.</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Luo, Yunan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimm, Hyungsuk</au><au>Guan, Kaiyu</au><au>Jiang, Chongya</au><au>Peng, Bin</au><au>Gentry, Laura F.</au><au>Wilkin, Scott C.</au><au>Wang, Sibo</au><au>Cai, Yaping</au><au>Bernacchi, Carl J.</au><au>Peng, Jian</au><au>Luo, Yunan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data</atitle><jtitle>Remote sensing of environment</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>239</volume><issue>C</issue><spage>111615</spage><pages>111615-</pages><artnum>111615</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Leaf area index (LAI) is a key variable for characterizing crop growth conditions and estimating crop productivity. Despite continuing efforts to develop LAI estimation algorithms, LAI datasets still need improvement at spatial and temporal resolutions to meet the requirements of agricultural applications. Advancements in data fusion technique and the emergence of new satellite data provide opportunities for LAI data at higher resolutions in both space and time. In this study, we derived new LAI estimations by leveraging novel satellite remote sensing datasets, STAIR fusion (MODIS-Landsat fusion) and Planet Labs' CubeSat data (through a reprocessed pipeline) for a typical agricultural landscape in the U.S. Corn Belt. The STAIR fused data and our reprocessed CubeSat data have both fine spatial resolutions (30 m and 3.125 m, respectively) and high frequencies (daily for both). To reliably estimate LAI from these advanced satellite datasets, we used two methods: inversion of a radiative transfer model (RTM), and empirical relationship with vegetation index (VI) calibrated from field measured LAI. Compared to the ground-truth LAI collected at 36 sites across the study region, reliable approximations were achieved by both LAI estimations based on PROSAIL RTM (STAIR: R2 = 0.69 and root mean squared error (RMSE) = 1.12 (m2 m−2), CubeSat: R2 = 0.76 and RMSE = 1.09 (m2 m−2)), and LAI estimations based on Green Wide Dynamic Range Vegetation Index (GrWDRVI) (STAIR: R2 = 0.75, RMSE = 1.10 (m2 m−2), CubeSat: R2 = 0.76, RMSE = 1.08 (m2 m−2), where validation ground-truth is independent from calibration data). Newly estimated high-resolution LAI data were aggregated at 500 m resolution and compared with MODIS and VIIRS LAI products, revealing substantial uncertainties and biases in these two products. We also demonstrated phenology stage estimation at fine spatial resolutions based on our high-frequency LAI data. The proposed LAI estimation methods at both high spatial resolution and temporal frequency can be applied to the entire U.S. Corn Belt and provide significant advancement to crop monitoring and precision agriculture. •High-spatiotemporal-resolution LAI is achieved from MODIS-Landsat Fusion and CubeSat.•Both empirical and process-based LAI estimations achieve high performance.•The MODIS and VIIRS LAI products show large bias for cropland.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2019.111615</doi><orcidid>https://orcid.org/0000-0002-1660-7320</orcidid><orcidid>https://orcid.org/0000-0001-7728-6412</orcidid><orcidid>https://orcid.org/0000-0002-3499-6382</orcidid><orcidid>https://orcid.org/0000-0001-8189-0874</orcidid><orcidid>https://orcid.org/0000-0002-7284-3010</orcidid><orcidid>https://orcid.org/0000-0002-7601-8886</orcidid><orcidid>https://orcid.org/0000000234996382</orcidid><orcidid>https://orcid.org/0000000216607320</orcidid><orcidid>https://orcid.org/0000000276018886</orcidid><orcidid>https://orcid.org/0000000177286412</orcidid><orcidid>https://orcid.org/0000000181890874</orcidid><orcidid>https://orcid.org/0000000272843010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2020-03, Vol.239 (C), p.111615, Article 111615
issn 0034-4257
1879-0704
language eng
recordid cdi_osti_scitechconnect_1580764
source ScienceDirect Freedom Collection
subjects Agricultural ecosystems
Agricultural land
Agriculture
Algorithms
Calibration
Camera network
Corn
Corn belt
Crop growth
Crop production
Crops
CubeSat
Data integration
Datasets
Frequency dependence
Growth conditions
High resolution
Land use
Landsat
Landsat satellites
Leaf area
Leaf area index
MODIS
Planet Labs
Planets
Precision farming
PROSAIL
Radiative transfer
Remote sensing
Root-mean-square errors
Satellite data
Satellites
Spatial discrimination
Spatial resolution
STAIR fusion
Vegetation
Vegetation index
title Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deriving%20high-spatiotemporal-resolution%20leaf%20area%20index%20for%20agroecosystems%20in%20the%20U.S.%20Corn%20Belt%20using%20Planet%20Labs%20CubeSat%20and%20STAIR%20fusion%20data&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Kimm,%20Hyungsuk&rft.date=2020-03-15&rft.volume=239&rft.issue=C&rft.spage=111615&rft.pages=111615-&rft.artnum=111615&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2019.111615&rft_dat=%3Cproquest_osti_%3E2377331038%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-9f6fa8f31fad8bd1787bc9fb6c393654d31cccca6c1437e8eefa468598e039213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2377331038&rft_id=info:pmid/&rfr_iscdi=true