Loading…
Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria
The formal stability analysis of Eulerian extended magnetohydrodynamics (XMHD) equilibria is considered within the noncanonical Hamiltonian framework by means of the energy-Casimir variational principle and the dynamically accessible stability method. Specifically, we find explicit sufficient stabil...
Saved in:
Published in: | Physics of plasmas 2020-01, Vol.27 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 27 |
creator | Kaltsas, D. A. Throumoulopoulos, G. N. Morrison, P. J. |
description | The formal stability analysis of Eulerian extended magnetohydrodynamics (XMHD) equilibria is considered within the noncanonical Hamiltonian framework by means of the energy-Casimir variational principle and the dynamically accessible stability method. Specifically, we find explicit sufficient stability conditions for axisymmetric XMHD and Hall MHD (HMHD) equilibria with toroidal flow and for equilibria with arbitrary flow under constrained perturbations. The dynamically accessible, second-order variation of the Hamiltonian, which can potentially provide explicit stability criteria for generic equilibria, is also obtained. Moreover, we examine the Lagrangian stability of the general quasineutral two-fluid model written in terms of MHD-like variables, by finding the action and the Hamiltonian functionals of the linearized dynamics, working within a mixed Lagrangian-Eulerian framework. Upon neglecting electron mass, we derive a HMHD energy principle, and in addition, the perturbed induction equation arises from Hamilton's equations of motion in view of a consistency condition for the relation between the perturbed magnetic potential and the canonical variables. |
doi_str_mv | 10.1063/1.5125573 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1581013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331895131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593</originalsourceid><addsrcrecordid>eNp90DtPwzAQAOAIgUQpDPwDCyZQU-w4zmNEVXlIlVg6sFkX55K6pHZruxL596RKZ6a74btnFN0zOmc04y9sLlgiRM4vogmjRRnnWZ5envKcxlmWfl9HN95vKaVpJopJ9LM06No-XoDXO-1mpO4N7LSCrusJKIXe66rDGQFTkxW0DkyrwRAfoNKdDj2xDcHfgKbGmuygNRjspq-dPTcieDgOsHIabqOrBjqPd-c4jdZvy_XiI159vX8uXlexShMa4gZTEKpCgCSrc0aZUiWlFfKccyxEzgouEiiGiwqV0QJzWlaMY9NkNAFR8mn0MLa1PmjplQ6oNsoagypIJoZCxgf0OKK9s4cj-iC39ujMsJZMOGdFKRhng3oalXLWe4eN3Du9A9dLRuXp35LJ878H-zza00QI2pp_8B-OEYAR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331895131</pqid></control><display><type>article</type><title>Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Kaltsas, D. A. ; Throumoulopoulos, G. N. ; Morrison, P. J.</creator><creatorcontrib>Kaltsas, D. A. ; Throumoulopoulos, G. N. ; Morrison, P. J.</creatorcontrib><description>The formal stability analysis of Eulerian extended magnetohydrodynamics (XMHD) equilibria is considered within the noncanonical Hamiltonian framework by means of the energy-Casimir variational principle and the dynamically accessible stability method. Specifically, we find explicit sufficient stability conditions for axisymmetric XMHD and Hall MHD (HMHD) equilibria with toroidal flow and for equilibria with arbitrary flow under constrained perturbations. The dynamically accessible, second-order variation of the Hamiltonian, which can potentially provide explicit stability criteria for generic equilibria, is also obtained. Moreover, we examine the Lagrangian stability of the general quasineutral two-fluid model written in terms of MHD-like variables, by finding the action and the Hamiltonian functionals of the linearized dynamics, working within a mixed Lagrangian-Eulerian framework. Upon neglecting electron mass, we derive a HMHD energy principle, and in addition, the perturbed induction equation arises from Hamilton's equations of motion in view of a consistency condition for the relation between the perturbed magnetic potential and the canonical variables.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5125573</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accessibility ; Computational fluid dynamics ; Dynamic stability ; Electron mass ; Equations of motion ; Equilibrium ; Fluid flow ; Magnetohydrodynamics ; Plasma physics ; Stability analysis ; Stability criteria ; Two fluid models</subject><ispartof>Physics of plasmas, 2020-01, Vol.27 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593</citedby><cites>FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593</cites><orcidid>0000-0003-1587-5072 ; 0000-0003-3336-687X ; 0000-0003-0076-9015 ; 0000000315875072 ; 0000000300769015 ; 000000033336687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5125573$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1581013$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaltsas, D. A.</creatorcontrib><creatorcontrib>Throumoulopoulos, G. N.</creatorcontrib><creatorcontrib>Morrison, P. J.</creatorcontrib><title>Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria</title><title>Physics of plasmas</title><description>The formal stability analysis of Eulerian extended magnetohydrodynamics (XMHD) equilibria is considered within the noncanonical Hamiltonian framework by means of the energy-Casimir variational principle and the dynamically accessible stability method. Specifically, we find explicit sufficient stability conditions for axisymmetric XMHD and Hall MHD (HMHD) equilibria with toroidal flow and for equilibria with arbitrary flow under constrained perturbations. The dynamically accessible, second-order variation of the Hamiltonian, which can potentially provide explicit stability criteria for generic equilibria, is also obtained. Moreover, we examine the Lagrangian stability of the general quasineutral two-fluid model written in terms of MHD-like variables, by finding the action and the Hamiltonian functionals of the linearized dynamics, working within a mixed Lagrangian-Eulerian framework. Upon neglecting electron mass, we derive a HMHD energy principle, and in addition, the perturbed induction equation arises from Hamilton's equations of motion in view of a consistency condition for the relation between the perturbed magnetic potential and the canonical variables.</description><subject>Accessibility</subject><subject>Computational fluid dynamics</subject><subject>Dynamic stability</subject><subject>Electron mass</subject><subject>Equations of motion</subject><subject>Equilibrium</subject><subject>Fluid flow</subject><subject>Magnetohydrodynamics</subject><subject>Plasma physics</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Two fluid models</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90DtPwzAQAOAIgUQpDPwDCyZQU-w4zmNEVXlIlVg6sFkX55K6pHZruxL596RKZ6a74btnFN0zOmc04y9sLlgiRM4vogmjRRnnWZ5envKcxlmWfl9HN95vKaVpJopJ9LM06No-XoDXO-1mpO4N7LSCrusJKIXe66rDGQFTkxW0DkyrwRAfoNKdDj2xDcHfgKbGmuygNRjspq-dPTcieDgOsHIabqOrBjqPd-c4jdZvy_XiI159vX8uXlexShMa4gZTEKpCgCSrc0aZUiWlFfKccyxEzgouEiiGiwqV0QJzWlaMY9NkNAFR8mn0MLa1PmjplQ6oNsoagypIJoZCxgf0OKK9s4cj-iC39ujMsJZMOGdFKRhng3oalXLWe4eN3Du9A9dLRuXp35LJ878H-zza00QI2pp_8B-OEYAR</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Kaltsas, D. A.</creator><creator>Throumoulopoulos, G. N.</creator><creator>Morrison, P. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1587-5072</orcidid><orcidid>https://orcid.org/0000-0003-3336-687X</orcidid><orcidid>https://orcid.org/0000-0003-0076-9015</orcidid><orcidid>https://orcid.org/0000000315875072</orcidid><orcidid>https://orcid.org/0000000300769015</orcidid><orcidid>https://orcid.org/000000033336687X</orcidid></search><sort><creationdate>202001</creationdate><title>Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria</title><author>Kaltsas, D. A. ; Throumoulopoulos, G. N. ; Morrison, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accessibility</topic><topic>Computational fluid dynamics</topic><topic>Dynamic stability</topic><topic>Electron mass</topic><topic>Equations of motion</topic><topic>Equilibrium</topic><topic>Fluid flow</topic><topic>Magnetohydrodynamics</topic><topic>Plasma physics</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Two fluid models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaltsas, D. A.</creatorcontrib><creatorcontrib>Throumoulopoulos, G. N.</creatorcontrib><creatorcontrib>Morrison, P. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaltsas, D. A.</au><au>Throumoulopoulos, G. N.</au><au>Morrison, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria</atitle><jtitle>Physics of plasmas</jtitle><date>2020-01</date><risdate>2020</risdate><volume>27</volume><issue>1</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The formal stability analysis of Eulerian extended magnetohydrodynamics (XMHD) equilibria is considered within the noncanonical Hamiltonian framework by means of the energy-Casimir variational principle and the dynamically accessible stability method. Specifically, we find explicit sufficient stability conditions for axisymmetric XMHD and Hall MHD (HMHD) equilibria with toroidal flow and for equilibria with arbitrary flow under constrained perturbations. The dynamically accessible, second-order variation of the Hamiltonian, which can potentially provide explicit stability criteria for generic equilibria, is also obtained. Moreover, we examine the Lagrangian stability of the general quasineutral two-fluid model written in terms of MHD-like variables, by finding the action and the Hamiltonian functionals of the linearized dynamics, working within a mixed Lagrangian-Eulerian framework. Upon neglecting electron mass, we derive a HMHD energy principle, and in addition, the perturbed induction equation arises from Hamilton's equations of motion in view of a consistency condition for the relation between the perturbed magnetic potential and the canonical variables.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5125573</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1587-5072</orcidid><orcidid>https://orcid.org/0000-0003-3336-687X</orcidid><orcidid>https://orcid.org/0000-0003-0076-9015</orcidid><orcidid>https://orcid.org/0000000315875072</orcidid><orcidid>https://orcid.org/0000000300769015</orcidid><orcidid>https://orcid.org/000000033336687X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2020-01, Vol.27 (1) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1581013 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | Accessibility Computational fluid dynamics Dynamic stability Electron mass Equations of motion Equilibrium Fluid flow Magnetohydrodynamics Plasma physics Stability analysis Stability criteria Two fluid models |
title | Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Casimir,%20dynamically%20accessible,%20and%20Lagrangian%20stability%20of%20extended%20magnetohydrodynamic%20equilibria&rft.jtitle=Physics%20of%20plasmas&rft.au=Kaltsas,%20D.%20A.&rft.date=2020-01&rft.volume=27&rft.issue=1&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5125573&rft_dat=%3Cproquest_osti_%3E2331895131%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331895131&rft_id=info:pmid/&rfr_iscdi=true |