Loading…

Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria

The formal stability analysis of Eulerian extended magnetohydrodynamics (XMHD) equilibria is considered within the noncanonical Hamiltonian framework by means of the energy-Casimir variational principle and the dynamically accessible stability method. Specifically, we find explicit sufficient stabil...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2020-01, Vol.27 (1)
Main Authors: Kaltsas, D. A., Throumoulopoulos, G. N., Morrison, P. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593
cites cdi_FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593
container_end_page
container_issue 1
container_start_page
container_title Physics of plasmas
container_volume 27
creator Kaltsas, D. A.
Throumoulopoulos, G. N.
Morrison, P. J.
description The formal stability analysis of Eulerian extended magnetohydrodynamics (XMHD) equilibria is considered within the noncanonical Hamiltonian framework by means of the energy-Casimir variational principle and the dynamically accessible stability method. Specifically, we find explicit sufficient stability conditions for axisymmetric XMHD and Hall MHD (HMHD) equilibria with toroidal flow and for equilibria with arbitrary flow under constrained perturbations. The dynamically accessible, second-order variation of the Hamiltonian, which can potentially provide explicit stability criteria for generic equilibria, is also obtained. Moreover, we examine the Lagrangian stability of the general quasineutral two-fluid model written in terms of MHD-like variables, by finding the action and the Hamiltonian functionals of the linearized dynamics, working within a mixed Lagrangian-Eulerian framework. Upon neglecting electron mass, we derive a HMHD energy principle, and in addition, the perturbed induction equation arises from Hamilton's equations of motion in view of a consistency condition for the relation between the perturbed magnetic potential and the canonical variables.
doi_str_mv 10.1063/1.5125573
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1581013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331895131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593</originalsourceid><addsrcrecordid>eNp90DtPwzAQAOAIgUQpDPwDCyZQU-w4zmNEVXlIlVg6sFkX55K6pHZruxL596RKZ6a74btnFN0zOmc04y9sLlgiRM4vogmjRRnnWZ5envKcxlmWfl9HN95vKaVpJopJ9LM06No-XoDXO-1mpO4N7LSCrusJKIXe66rDGQFTkxW0DkyrwRAfoNKdDj2xDcHfgKbGmuygNRjspq-dPTcieDgOsHIabqOrBjqPd-c4jdZvy_XiI159vX8uXlexShMa4gZTEKpCgCSrc0aZUiWlFfKccyxEzgouEiiGiwqV0QJzWlaMY9NkNAFR8mn0MLa1PmjplQ6oNsoagypIJoZCxgf0OKK9s4cj-iC39ujMsJZMOGdFKRhng3oalXLWe4eN3Du9A9dLRuXp35LJ878H-zza00QI2pp_8B-OEYAR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331895131</pqid></control><display><type>article</type><title>Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Kaltsas, D. A. ; Throumoulopoulos, G. N. ; Morrison, P. J.</creator><creatorcontrib>Kaltsas, D. A. ; Throumoulopoulos, G. N. ; Morrison, P. J.</creatorcontrib><description>The formal stability analysis of Eulerian extended magnetohydrodynamics (XMHD) equilibria is considered within the noncanonical Hamiltonian framework by means of the energy-Casimir variational principle and the dynamically accessible stability method. Specifically, we find explicit sufficient stability conditions for axisymmetric XMHD and Hall MHD (HMHD) equilibria with toroidal flow and for equilibria with arbitrary flow under constrained perturbations. The dynamically accessible, second-order variation of the Hamiltonian, which can potentially provide explicit stability criteria for generic equilibria, is also obtained. Moreover, we examine the Lagrangian stability of the general quasineutral two-fluid model written in terms of MHD-like variables, by finding the action and the Hamiltonian functionals of the linearized dynamics, working within a mixed Lagrangian-Eulerian framework. Upon neglecting electron mass, we derive a HMHD energy principle, and in addition, the perturbed induction equation arises from Hamilton's equations of motion in view of a consistency condition for the relation between the perturbed magnetic potential and the canonical variables.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5125573</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accessibility ; Computational fluid dynamics ; Dynamic stability ; Electron mass ; Equations of motion ; Equilibrium ; Fluid flow ; Magnetohydrodynamics ; Plasma physics ; Stability analysis ; Stability criteria ; Two fluid models</subject><ispartof>Physics of plasmas, 2020-01, Vol.27 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593</citedby><cites>FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593</cites><orcidid>0000-0003-1587-5072 ; 0000-0003-3336-687X ; 0000-0003-0076-9015 ; 0000000315875072 ; 0000000300769015 ; 000000033336687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5125573$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1581013$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaltsas, D. A.</creatorcontrib><creatorcontrib>Throumoulopoulos, G. N.</creatorcontrib><creatorcontrib>Morrison, P. J.</creatorcontrib><title>Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria</title><title>Physics of plasmas</title><description>The formal stability analysis of Eulerian extended magnetohydrodynamics (XMHD) equilibria is considered within the noncanonical Hamiltonian framework by means of the energy-Casimir variational principle and the dynamically accessible stability method. Specifically, we find explicit sufficient stability conditions for axisymmetric XMHD and Hall MHD (HMHD) equilibria with toroidal flow and for equilibria with arbitrary flow under constrained perturbations. The dynamically accessible, second-order variation of the Hamiltonian, which can potentially provide explicit stability criteria for generic equilibria, is also obtained. Moreover, we examine the Lagrangian stability of the general quasineutral two-fluid model written in terms of MHD-like variables, by finding the action and the Hamiltonian functionals of the linearized dynamics, working within a mixed Lagrangian-Eulerian framework. Upon neglecting electron mass, we derive a HMHD energy principle, and in addition, the perturbed induction equation arises from Hamilton's equations of motion in view of a consistency condition for the relation between the perturbed magnetic potential and the canonical variables.</description><subject>Accessibility</subject><subject>Computational fluid dynamics</subject><subject>Dynamic stability</subject><subject>Electron mass</subject><subject>Equations of motion</subject><subject>Equilibrium</subject><subject>Fluid flow</subject><subject>Magnetohydrodynamics</subject><subject>Plasma physics</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Two fluid models</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90DtPwzAQAOAIgUQpDPwDCyZQU-w4zmNEVXlIlVg6sFkX55K6pHZruxL596RKZ6a74btnFN0zOmc04y9sLlgiRM4vogmjRRnnWZ5envKcxlmWfl9HN95vKaVpJopJ9LM06No-XoDXO-1mpO4N7LSCrusJKIXe66rDGQFTkxW0DkyrwRAfoNKdDj2xDcHfgKbGmuygNRjspq-dPTcieDgOsHIabqOrBjqPd-c4jdZvy_XiI159vX8uXlexShMa4gZTEKpCgCSrc0aZUiWlFfKccyxEzgouEiiGiwqV0QJzWlaMY9NkNAFR8mn0MLa1PmjplQ6oNsoagypIJoZCxgf0OKK9s4cj-iC39ujMsJZMOGdFKRhng3oalXLWe4eN3Du9A9dLRuXp35LJ878H-zza00QI2pp_8B-OEYAR</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Kaltsas, D. A.</creator><creator>Throumoulopoulos, G. N.</creator><creator>Morrison, P. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1587-5072</orcidid><orcidid>https://orcid.org/0000-0003-3336-687X</orcidid><orcidid>https://orcid.org/0000-0003-0076-9015</orcidid><orcidid>https://orcid.org/0000000315875072</orcidid><orcidid>https://orcid.org/0000000300769015</orcidid><orcidid>https://orcid.org/000000033336687X</orcidid></search><sort><creationdate>202001</creationdate><title>Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria</title><author>Kaltsas, D. A. ; Throumoulopoulos, G. N. ; Morrison, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accessibility</topic><topic>Computational fluid dynamics</topic><topic>Dynamic stability</topic><topic>Electron mass</topic><topic>Equations of motion</topic><topic>Equilibrium</topic><topic>Fluid flow</topic><topic>Magnetohydrodynamics</topic><topic>Plasma physics</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Two fluid models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaltsas, D. A.</creatorcontrib><creatorcontrib>Throumoulopoulos, G. N.</creatorcontrib><creatorcontrib>Morrison, P. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaltsas, D. A.</au><au>Throumoulopoulos, G. N.</au><au>Morrison, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria</atitle><jtitle>Physics of plasmas</jtitle><date>2020-01</date><risdate>2020</risdate><volume>27</volume><issue>1</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The formal stability analysis of Eulerian extended magnetohydrodynamics (XMHD) equilibria is considered within the noncanonical Hamiltonian framework by means of the energy-Casimir variational principle and the dynamically accessible stability method. Specifically, we find explicit sufficient stability conditions for axisymmetric XMHD and Hall MHD (HMHD) equilibria with toroidal flow and for equilibria with arbitrary flow under constrained perturbations. The dynamically accessible, second-order variation of the Hamiltonian, which can potentially provide explicit stability criteria for generic equilibria, is also obtained. Moreover, we examine the Lagrangian stability of the general quasineutral two-fluid model written in terms of MHD-like variables, by finding the action and the Hamiltonian functionals of the linearized dynamics, working within a mixed Lagrangian-Eulerian framework. Upon neglecting electron mass, we derive a HMHD energy principle, and in addition, the perturbed induction equation arises from Hamilton's equations of motion in view of a consistency condition for the relation between the perturbed magnetic potential and the canonical variables.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5125573</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1587-5072</orcidid><orcidid>https://orcid.org/0000-0003-3336-687X</orcidid><orcidid>https://orcid.org/0000-0003-0076-9015</orcidid><orcidid>https://orcid.org/0000000315875072</orcidid><orcidid>https://orcid.org/0000000300769015</orcidid><orcidid>https://orcid.org/000000033336687X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2020-01, Vol.27 (1)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1581013
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Accessibility
Computational fluid dynamics
Dynamic stability
Electron mass
Equations of motion
Equilibrium
Fluid flow
Magnetohydrodynamics
Plasma physics
Stability analysis
Stability criteria
Two fluid models
title Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Casimir,%20dynamically%20accessible,%20and%20Lagrangian%20stability%20of%20extended%20magnetohydrodynamic%20equilibria&rft.jtitle=Physics%20of%20plasmas&rft.au=Kaltsas,%20D.%20A.&rft.date=2020-01&rft.volume=27&rft.issue=1&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5125573&rft_dat=%3Cproquest_osti_%3E2331895131%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-fe4a5cbeaa26d7101cc900be3733e85718352a81078c608e709b13eff602a593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331895131&rft_id=info:pmid/&rfr_iscdi=true