Loading…
Enhanced Softwood Cellulose Accessibility by H3PO4 Pretreatment: High Sugar Yield without Compromising Lignin Integrity
Softwood lignocellulose is a potential feedstock for the production of biofuels and bioproducts. However, the highly cross-linked nature of softwood lignocellulose restricts enzyme access to its sugars. Thus, harsh pretreatment conditions (180–280 °C) and/or high enzyme loading are required to unloc...
Saved in:
Published in: | Industrial & engineering chemistry research 2019-12, Vol.59 (2) |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Industrial & engineering chemistry research |
container_volume | 59 |
creator | Hossain, Anwar Rahaman, Mohammad Shahinur Lee, David Phung, Thanh Khoa Canlas, Christian G. Simmons, Blake A. Renneckar, Scott Reynolds, William George, Anthe Tulaphol, Sarttrawut Sathitsuksanoh, Noppadon |
description | Softwood lignocellulose is a potential feedstock for the production of biofuels and bioproducts. However, the highly cross-linked nature of softwood lignocellulose restricts enzyme access to its sugars. Thus, harsh pretreatment conditions (180–280 °C) and/or high enzyme loading are required to unlock sugars. These requirements negatively affect the economic viability of softwoods in biorefineries. Here we show that H3PO4 pretreatment of pine and Douglas fir under a mild reaction temperature (50 °C) and atmospheric pressure enabled a high (~80%) glucan digestibility with low enzyme loading (5 filter paper units (FPU)/g glucan). The dissolution and regeneration of softwoods disrupted the hydrogen bonding between cellulose chains, thereby increasing the cellulose accessibility to cellulase (CAC) values by ~38-fold (from ~0.4 to 15 m2/g biomass). Examination of H3PO4-pretreated softwoods by cross-polarization/magic angle spin (CP/MAS), 13C- nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR) revealed that breaking of the orderly hydrogen bonding of crystalline cellulose caused the increase in CAC (higher than 11 m2/g biomass), which, in turn, was responsible for the high glucan digestibility of pretreated softwoods. The H3PO4 pretreatment process was feedstock independent. Finally, 2D 13C–1H heteronuclear single quantum coherence (HSQC) NMR showed that the lignin was depolymerized but not condensed; thus, the lignin can be available for producing high-value products. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1581639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1581639</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15816393</originalsourceid><addsrcrecordid>eNqNzM9Kw0AQgPGlKBj_vMPgPbAxWdl6K6ESQbBQL55KuplupmxmZXdC6NvrwQfw9F1-fCtVVOZJl0Y35koV2lpbGmvNjbrN-ay1NqZpCrVseezZ4QD7eJIlxgFaDGEOMSNsnMOc6UiB5ALHC3T17qOBXUJJ2MuELC_QkR9hP_s-wRdhGGAhGeMs0MbpO8WJMrGHd_JMDG8s6NPv7V5dn_qQ8eGvd-rxdfvZdmXMQofsSNCNLjKjk0NlbPVcr-t_oR-gtU6Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Softwood Cellulose Accessibility by H3PO4 Pretreatment: High Sugar Yield without Compromising Lignin Integrity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hossain, Anwar ; Rahaman, Mohammad Shahinur ; Lee, David ; Phung, Thanh Khoa ; Canlas, Christian G. ; Simmons, Blake A. ; Renneckar, Scott ; Reynolds, William ; George, Anthe ; Tulaphol, Sarttrawut ; Sathitsuksanoh, Noppadon</creator><creatorcontrib>Hossain, Anwar ; Rahaman, Mohammad Shahinur ; Lee, David ; Phung, Thanh Khoa ; Canlas, Christian G. ; Simmons, Blake A. ; Renneckar, Scott ; Reynolds, William ; George, Anthe ; Tulaphol, Sarttrawut ; Sathitsuksanoh, Noppadon ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Softwood lignocellulose is a potential feedstock for the production of biofuels and bioproducts. However, the highly cross-linked nature of softwood lignocellulose restricts enzyme access to its sugars. Thus, harsh pretreatment conditions (180–280 °C) and/or high enzyme loading are required to unlock sugars. These requirements negatively affect the economic viability of softwoods in biorefineries. Here we show that H3PO4 pretreatment of pine and Douglas fir under a mild reaction temperature (50 °C) and atmospheric pressure enabled a high (~80%) glucan digestibility with low enzyme loading (5 filter paper units (FPU)/g glucan). The dissolution and regeneration of softwoods disrupted the hydrogen bonding between cellulose chains, thereby increasing the cellulose accessibility to cellulase (CAC) values by ~38-fold (from ~0.4 to 15 m2/g biomass). Examination of H3PO4-pretreated softwoods by cross-polarization/magic angle spin (CP/MAS), 13C- nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR) revealed that breaking of the orderly hydrogen bonding of crystalline cellulose caused the increase in CAC (higher than 11 m2/g biomass), which, in turn, was responsible for the high glucan digestibility of pretreated softwoods. The H3PO4 pretreatment process was feedstock independent. Finally, 2D 13C–1H heteronuclear single quantum coherence (HSQC) NMR showed that the lignin was depolymerized but not condensed; thus, the lignin can be available for producing high-value products.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><language>eng</language><publisher>United States: American Chemical Society (ACS)</publisher><subject>09 BIOMASS FUELS ; accessibility ; biomass ; Enzymatic hydrolysis ; enzymes ; Lignocellulosic Biomass ; softwood</subject><ispartof>Industrial & engineering chemistry research, 2019-12, Vol.59 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000213321810 ; 0000000320962859 ; 0000000315219155 ; 0000000279721091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1581639$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hossain, Anwar</creatorcontrib><creatorcontrib>Rahaman, Mohammad Shahinur</creatorcontrib><creatorcontrib>Lee, David</creatorcontrib><creatorcontrib>Phung, Thanh Khoa</creatorcontrib><creatorcontrib>Canlas, Christian G.</creatorcontrib><creatorcontrib>Simmons, Blake A.</creatorcontrib><creatorcontrib>Renneckar, Scott</creatorcontrib><creatorcontrib>Reynolds, William</creatorcontrib><creatorcontrib>George, Anthe</creatorcontrib><creatorcontrib>Tulaphol, Sarttrawut</creatorcontrib><creatorcontrib>Sathitsuksanoh, Noppadon</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Enhanced Softwood Cellulose Accessibility by H3PO4 Pretreatment: High Sugar Yield without Compromising Lignin Integrity</title><title>Industrial & engineering chemistry research</title><description>Softwood lignocellulose is a potential feedstock for the production of biofuels and bioproducts. However, the highly cross-linked nature of softwood lignocellulose restricts enzyme access to its sugars. Thus, harsh pretreatment conditions (180–280 °C) and/or high enzyme loading are required to unlock sugars. These requirements negatively affect the economic viability of softwoods in biorefineries. Here we show that H3PO4 pretreatment of pine and Douglas fir under a mild reaction temperature (50 °C) and atmospheric pressure enabled a high (~80%) glucan digestibility with low enzyme loading (5 filter paper units (FPU)/g glucan). The dissolution and regeneration of softwoods disrupted the hydrogen bonding between cellulose chains, thereby increasing the cellulose accessibility to cellulase (CAC) values by ~38-fold (from ~0.4 to 15 m2/g biomass). Examination of H3PO4-pretreated softwoods by cross-polarization/magic angle spin (CP/MAS), 13C- nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR) revealed that breaking of the orderly hydrogen bonding of crystalline cellulose caused the increase in CAC (higher than 11 m2/g biomass), which, in turn, was responsible for the high glucan digestibility of pretreated softwoods. The H3PO4 pretreatment process was feedstock independent. Finally, 2D 13C–1H heteronuclear single quantum coherence (HSQC) NMR showed that the lignin was depolymerized but not condensed; thus, the lignin can be available for producing high-value products.</description><subject>09 BIOMASS FUELS</subject><subject>accessibility</subject><subject>biomass</subject><subject>Enzymatic hydrolysis</subject><subject>enzymes</subject><subject>Lignocellulosic Biomass</subject><subject>softwood</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNzM9Kw0AQgPGlKBj_vMPgPbAxWdl6K6ESQbBQL55KuplupmxmZXdC6NvrwQfw9F1-fCtVVOZJl0Y35koV2lpbGmvNjbrN-ay1NqZpCrVseezZ4QD7eJIlxgFaDGEOMSNsnMOc6UiB5ALHC3T17qOBXUJJ2MuELC_QkR9hP_s-wRdhGGAhGeMs0MbpO8WJMrGHd_JMDG8s6NPv7V5dn_qQ8eGvd-rxdfvZdmXMQofsSNCNLjKjk0NlbPVcr-t_oR-gtU6Z</recordid><startdate>20191223</startdate><enddate>20191223</enddate><creator>Hossain, Anwar</creator><creator>Rahaman, Mohammad Shahinur</creator><creator>Lee, David</creator><creator>Phung, Thanh Khoa</creator><creator>Canlas, Christian G.</creator><creator>Simmons, Blake A.</creator><creator>Renneckar, Scott</creator><creator>Reynolds, William</creator><creator>George, Anthe</creator><creator>Tulaphol, Sarttrawut</creator><creator>Sathitsuksanoh, Noppadon</creator><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000213321810</orcidid><orcidid>https://orcid.org/0000000320962859</orcidid><orcidid>https://orcid.org/0000000315219155</orcidid><orcidid>https://orcid.org/0000000279721091</orcidid></search><sort><creationdate>20191223</creationdate><title>Enhanced Softwood Cellulose Accessibility by H3PO4 Pretreatment: High Sugar Yield without Compromising Lignin Integrity</title><author>Hossain, Anwar ; Rahaman, Mohammad Shahinur ; Lee, David ; Phung, Thanh Khoa ; Canlas, Christian G. ; Simmons, Blake A. ; Renneckar, Scott ; Reynolds, William ; George, Anthe ; Tulaphol, Sarttrawut ; Sathitsuksanoh, Noppadon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15816393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>09 BIOMASS FUELS</topic><topic>accessibility</topic><topic>biomass</topic><topic>Enzymatic hydrolysis</topic><topic>enzymes</topic><topic>Lignocellulosic Biomass</topic><topic>softwood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Anwar</creatorcontrib><creatorcontrib>Rahaman, Mohammad Shahinur</creatorcontrib><creatorcontrib>Lee, David</creatorcontrib><creatorcontrib>Phung, Thanh Khoa</creatorcontrib><creatorcontrib>Canlas, Christian G.</creatorcontrib><creatorcontrib>Simmons, Blake A.</creatorcontrib><creatorcontrib>Renneckar, Scott</creatorcontrib><creatorcontrib>Reynolds, William</creatorcontrib><creatorcontrib>George, Anthe</creatorcontrib><creatorcontrib>Tulaphol, Sarttrawut</creatorcontrib><creatorcontrib>Sathitsuksanoh, Noppadon</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Anwar</au><au>Rahaman, Mohammad Shahinur</au><au>Lee, David</au><au>Phung, Thanh Khoa</au><au>Canlas, Christian G.</au><au>Simmons, Blake A.</au><au>Renneckar, Scott</au><au>Reynolds, William</au><au>George, Anthe</au><au>Tulaphol, Sarttrawut</au><au>Sathitsuksanoh, Noppadon</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Softwood Cellulose Accessibility by H3PO4 Pretreatment: High Sugar Yield without Compromising Lignin Integrity</atitle><jtitle>Industrial & engineering chemistry research</jtitle><date>2019-12-23</date><risdate>2019</risdate><volume>59</volume><issue>2</issue><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Softwood lignocellulose is a potential feedstock for the production of biofuels and bioproducts. However, the highly cross-linked nature of softwood lignocellulose restricts enzyme access to its sugars. Thus, harsh pretreatment conditions (180–280 °C) and/or high enzyme loading are required to unlock sugars. These requirements negatively affect the economic viability of softwoods in biorefineries. Here we show that H3PO4 pretreatment of pine and Douglas fir under a mild reaction temperature (50 °C) and atmospheric pressure enabled a high (~80%) glucan digestibility with low enzyme loading (5 filter paper units (FPU)/g glucan). The dissolution and regeneration of softwoods disrupted the hydrogen bonding between cellulose chains, thereby increasing the cellulose accessibility to cellulase (CAC) values by ~38-fold (from ~0.4 to 15 m2/g biomass). Examination of H3PO4-pretreated softwoods by cross-polarization/magic angle spin (CP/MAS), 13C- nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR) revealed that breaking of the orderly hydrogen bonding of crystalline cellulose caused the increase in CAC (higher than 11 m2/g biomass), which, in turn, was responsible for the high glucan digestibility of pretreated softwoods. The H3PO4 pretreatment process was feedstock independent. Finally, 2D 13C–1H heteronuclear single quantum coherence (HSQC) NMR showed that the lignin was depolymerized but not condensed; thus, the lignin can be available for producing high-value products.</abstract><cop>United States</cop><pub>American Chemical Society (ACS)</pub><orcidid>https://orcid.org/0000000213321810</orcidid><orcidid>https://orcid.org/0000000320962859</orcidid><orcidid>https://orcid.org/0000000315219155</orcidid><orcidid>https://orcid.org/0000000279721091</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2019-12, Vol.59 (2) |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_osti_scitechconnect_1581639 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | 09 BIOMASS FUELS accessibility biomass Enzymatic hydrolysis enzymes Lignocellulosic Biomass softwood |
title | Enhanced Softwood Cellulose Accessibility by H3PO4 Pretreatment: High Sugar Yield without Compromising Lignin Integrity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Softwood%20Cellulose%20Accessibility%20by%20H3PO4%20Pretreatment:%20High%20Sugar%20Yield%20without%20Compromising%20Lignin%20Integrity&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Hossain,%20Anwar&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-12-23&rft.volume=59&rft.issue=2&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/&rft_dat=%3Costi%3E1581639%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_15816393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |