Loading…

Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures

[Display omitted] •We evaluated the viability and distribution of cells in a 3D neuronal culture.•Culture conditions during collagen fibrillogenesis were systematically studied.•Homogeneous distribution was achieved by tuning cell concentration and CO2.•Percent cell viability was higher at lower cel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience methods 2020-01, Vol.329 (C), p.108460-108460, Article 108460
Main Authors: Lam, Doris, Enright, Heather A., Peters, Sandra K.G., Moya, Monica L., Soscia, David A., Cadena, Jose, Alvarado, Javier A., Kulp, Kristen S., Wheeler, Elizabeth K., Fischer, Nicholas O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-5c8dcc64d0616675e79c00ad6017dcff1ad80056b066e8b98b38377459af65063
cites cdi_FETCH-LOGICAL-c443t-5c8dcc64d0616675e79c00ad6017dcff1ad80056b066e8b98b38377459af65063
container_end_page 108460
container_issue C
container_start_page 108460
container_title Journal of neuroscience methods
container_volume 329
creator Lam, Doris
Enright, Heather A.
Peters, Sandra K.G.
Moya, Monica L.
Soscia, David A.
Cadena, Jose
Alvarado, Javier A.
Kulp, Kristen S.
Wheeler, Elizabeth K.
Fischer, Nicholas O.
description [Display omitted] •We evaluated the viability and distribution of cells in a 3D neuronal culture.•Culture conditions during collagen fibrillogenesis were systematically studied.•Homogeneous distribution was achieved by tuning cell concentration and CO2.•Percent cell viability was higher at lower cell concentrations and with CO2.•Optimization of seeding parameters is critical to reproduce 3D neuronal cultures. The emergence of three-dimensional (3D) cell culture in neural tissue engineering has significantly elevated the complexity and relevance of in vitro systems. This is due in large part to the incorporation of biomaterials to impart structural dimensionality on the neuronal cultures. However, a comprehensive understanding of how key seeding parameters affect changes in cell distribution and viability remain unreported. In this study, we systematically evaluated permutations in seeding conditions (i.e., cell concentration and atmospheric CO2 levels) to understand how these affect key parameters in 3D culture characterization (i.e., cell health and distribution). Primary rat cortical neurons (i.e., 2 × 106, 4 × 106, and 1 × 107 cells/mL) were entrapped in collagen blended with ECM proteins (ECM-Collagen) and exposed to atmospheric CO2 (i.e., 0 vs 5% CO2) during fibrillogenesis. At 14 days in vitro (DIV), cell distribution within the hydrogel was dependent on cell concentration and atmospheric CO2 during fibrillogenesis. A uniform distribution of cells was observed in cultures with 2 × 106 and 4 × 106 cells/mL in the presence of 5% CO2, while a heterogeneous distribution was observed in cultures with 1 × 107 cells/mL or in the absence of CO2. Furthermore, increased cell concentration was proportional to the rise in cell death at 14 DIV, although cells remain viable >30 DIV. ECM-Collagen gels have been shown to increase cell viability of neurons long-term. In using ECM-collagen gels, we highlight the importance of optimizing seeding parameters and thorough 3D culture characterization to understand the neurophysiological responses of these 3D systems.
doi_str_mv 10.1016/j.jneumeth.2019.108460
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1581896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027019303176</els_id><sourcerecordid>2307128695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-5c8dcc64d0616675e79c00ad6017dcff1ad80056b066e8b98b38377459af65063</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS1ERYfCK1QWKzYZrvPjODvQUKBSUTet1J3lsW9mPErsYDuVytPjkJYtK1vWd3zPPYeQSwZbBox_Om1PDucR03FbAuvyo6g5vCIbJtqy4K14eE02GWwKKFs4J29jPAFA3QF_Q84rxkueBRuib6dkR_vbugPVOAwUnVZTnAeVrHdUe2fs35t19Gr3s9j5YVAHdPSaHp9M8AccIk2exnmafEi0-kqzr-CdGqiehzQHjO_IWa-GiO-fzwty_-3qbvejuLn9fr37clPouq5S0WhhtOa1Ac44bxtsOw2gDAfWGt33TBkB0PA9cI5i34l9Jaq2rZtO9bwBXl2QD-u_PiYro7YJ9TFv4FAnyRrBRLdAH1doCv7XjDHJ0cZlc-XQz1GWFbSsFLxrMspXVAcfY8BeTsGOKjxJBnJpQZ7kSwtyaUGuLWTh5fOMeT-i-Sd7iT0Dn1cgp4ePFsPiNiePxobFrPH2fzP-AMk8nAs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307128695</pqid></control><display><type>article</type><title>Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures</title><source>Elsevier</source><creator>Lam, Doris ; Enright, Heather A. ; Peters, Sandra K.G. ; Moya, Monica L. ; Soscia, David A. ; Cadena, Jose ; Alvarado, Javier A. ; Kulp, Kristen S. ; Wheeler, Elizabeth K. ; Fischer, Nicholas O.</creator><creatorcontrib>Lam, Doris ; Enright, Heather A. ; Peters, Sandra K.G. ; Moya, Monica L. ; Soscia, David A. ; Cadena, Jose ; Alvarado, Javier A. ; Kulp, Kristen S. ; Wheeler, Elizabeth K. ; Fischer, Nicholas O. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>[Display omitted] •We evaluated the viability and distribution of cells in a 3D neuronal culture.•Culture conditions during collagen fibrillogenesis were systematically studied.•Homogeneous distribution was achieved by tuning cell concentration and CO2.•Percent cell viability was higher at lower cell concentrations and with CO2.•Optimization of seeding parameters is critical to reproduce 3D neuronal cultures. The emergence of three-dimensional (3D) cell culture in neural tissue engineering has significantly elevated the complexity and relevance of in vitro systems. This is due in large part to the incorporation of biomaterials to impart structural dimensionality on the neuronal cultures. However, a comprehensive understanding of how key seeding parameters affect changes in cell distribution and viability remain unreported. In this study, we systematically evaluated permutations in seeding conditions (i.e., cell concentration and atmospheric CO2 levels) to understand how these affect key parameters in 3D culture characterization (i.e., cell health and distribution). Primary rat cortical neurons (i.e., 2 × 106, 4 × 106, and 1 × 107 cells/mL) were entrapped in collagen blended with ECM proteins (ECM-Collagen) and exposed to atmospheric CO2 (i.e., 0 vs 5% CO2) during fibrillogenesis. At 14 days in vitro (DIV), cell distribution within the hydrogel was dependent on cell concentration and atmospheric CO2 during fibrillogenesis. A uniform distribution of cells was observed in cultures with 2 × 106 and 4 × 106 cells/mL in the presence of 5% CO2, while a heterogeneous distribution was observed in cultures with 1 × 107 cells/mL or in the absence of CO2. Furthermore, increased cell concentration was proportional to the rise in cell death at 14 DIV, although cells remain viable &gt;30 DIV. ECM-Collagen gels have been shown to increase cell viability of neurons long-term. In using ECM-collagen gels, we highlight the importance of optimizing seeding parameters and thorough 3D culture characterization to understand the neurophysiological responses of these 3D systems.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2019.108460</identifier><identifier>PMID: 31626846</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3D Neuronal culture ; BASIC BIOLOGICAL SCIENCES ; Cell Encapsulation - methods ; Cell Encapsulation - standards ; Cerebral Cortex - cytology ; Collagen Type I ; Cortical neurons ; ECM-collagen hydrogel ; Entrapment ; Extracellular Matrix ; Humans ; Hydrogel ; Hydrogels ; Neurons - cytology ; Primary Cell Culture - methods ; Primary Cell Culture - standards</subject><ispartof>Journal of neuroscience methods, 2020-01, Vol.329 (C), p.108460-108460, Article 108460</ispartof><rights>2019 The Authors</rights><rights>Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-5c8dcc64d0616675e79c00ad6017dcff1ad80056b066e8b98b38377459af65063</citedby><cites>FETCH-LOGICAL-c443t-5c8dcc64d0616675e79c00ad6017dcff1ad80056b066e8b98b38377459af65063</cites><orcidid>0000-0002-3882-9514 ; 0000-0001-7575-4390 ; 0000000238829514 ; 0000000175754390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31626846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1581896$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, Doris</creatorcontrib><creatorcontrib>Enright, Heather A.</creatorcontrib><creatorcontrib>Peters, Sandra K.G.</creatorcontrib><creatorcontrib>Moya, Monica L.</creatorcontrib><creatorcontrib>Soscia, David A.</creatorcontrib><creatorcontrib>Cadena, Jose</creatorcontrib><creatorcontrib>Alvarado, Javier A.</creatorcontrib><creatorcontrib>Kulp, Kristen S.</creatorcontrib><creatorcontrib>Wheeler, Elizabeth K.</creatorcontrib><creatorcontrib>Fischer, Nicholas O.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>[Display omitted] •We evaluated the viability and distribution of cells in a 3D neuronal culture.•Culture conditions during collagen fibrillogenesis were systematically studied.•Homogeneous distribution was achieved by tuning cell concentration and CO2.•Percent cell viability was higher at lower cell concentrations and with CO2.•Optimization of seeding parameters is critical to reproduce 3D neuronal cultures. The emergence of three-dimensional (3D) cell culture in neural tissue engineering has significantly elevated the complexity and relevance of in vitro systems. This is due in large part to the incorporation of biomaterials to impart structural dimensionality on the neuronal cultures. However, a comprehensive understanding of how key seeding parameters affect changes in cell distribution and viability remain unreported. In this study, we systematically evaluated permutations in seeding conditions (i.e., cell concentration and atmospheric CO2 levels) to understand how these affect key parameters in 3D culture characterization (i.e., cell health and distribution). Primary rat cortical neurons (i.e., 2 × 106, 4 × 106, and 1 × 107 cells/mL) were entrapped in collagen blended with ECM proteins (ECM-Collagen) and exposed to atmospheric CO2 (i.e., 0 vs 5% CO2) during fibrillogenesis. At 14 days in vitro (DIV), cell distribution within the hydrogel was dependent on cell concentration and atmospheric CO2 during fibrillogenesis. A uniform distribution of cells was observed in cultures with 2 × 106 and 4 × 106 cells/mL in the presence of 5% CO2, while a heterogeneous distribution was observed in cultures with 1 × 107 cells/mL or in the absence of CO2. Furthermore, increased cell concentration was proportional to the rise in cell death at 14 DIV, although cells remain viable &gt;30 DIV. ECM-Collagen gels have been shown to increase cell viability of neurons long-term. In using ECM-collagen gels, we highlight the importance of optimizing seeding parameters and thorough 3D culture characterization to understand the neurophysiological responses of these 3D systems.</description><subject>3D Neuronal culture</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Cell Encapsulation - methods</subject><subject>Cell Encapsulation - standards</subject><subject>Cerebral Cortex - cytology</subject><subject>Collagen Type I</subject><subject>Cortical neurons</subject><subject>ECM-collagen hydrogel</subject><subject>Entrapment</subject><subject>Extracellular Matrix</subject><subject>Humans</subject><subject>Hydrogel</subject><subject>Hydrogels</subject><subject>Neurons - cytology</subject><subject>Primary Cell Culture - methods</subject><subject>Primary Cell Culture - standards</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS1ERYfCK1QWKzYZrvPjODvQUKBSUTet1J3lsW9mPErsYDuVytPjkJYtK1vWd3zPPYeQSwZbBox_Om1PDucR03FbAuvyo6g5vCIbJtqy4K14eE02GWwKKFs4J29jPAFA3QF_Q84rxkueBRuib6dkR_vbugPVOAwUnVZTnAeVrHdUe2fs35t19Gr3s9j5YVAHdPSaHp9M8AccIk2exnmafEi0-kqzr-CdGqiehzQHjO_IWa-GiO-fzwty_-3qbvejuLn9fr37clPouq5S0WhhtOa1Ac44bxtsOw2gDAfWGt33TBkB0PA9cI5i34l9Jaq2rZtO9bwBXl2QD-u_PiYro7YJ9TFv4FAnyRrBRLdAH1doCv7XjDHJ0cZlc-XQz1GWFbSsFLxrMspXVAcfY8BeTsGOKjxJBnJpQZ7kSwtyaUGuLWTh5fOMeT-i-Sd7iT0Dn1cgp4ePFsPiNiePxobFrPH2fzP-AMk8nAs</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lam, Doris</creator><creator>Enright, Heather A.</creator><creator>Peters, Sandra K.G.</creator><creator>Moya, Monica L.</creator><creator>Soscia, David A.</creator><creator>Cadena, Jose</creator><creator>Alvarado, Javier A.</creator><creator>Kulp, Kristen S.</creator><creator>Wheeler, Elizabeth K.</creator><creator>Fischer, Nicholas O.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3882-9514</orcidid><orcidid>https://orcid.org/0000-0001-7575-4390</orcidid><orcidid>https://orcid.org/0000000238829514</orcidid><orcidid>https://orcid.org/0000000175754390</orcidid></search><sort><creationdate>20200101</creationdate><title>Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures</title><author>Lam, Doris ; Enright, Heather A. ; Peters, Sandra K.G. ; Moya, Monica L. ; Soscia, David A. ; Cadena, Jose ; Alvarado, Javier A. ; Kulp, Kristen S. ; Wheeler, Elizabeth K. ; Fischer, Nicholas O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-5c8dcc64d0616675e79c00ad6017dcff1ad80056b066e8b98b38377459af65063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D Neuronal culture</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Cell Encapsulation - methods</topic><topic>Cell Encapsulation - standards</topic><topic>Cerebral Cortex - cytology</topic><topic>Collagen Type I</topic><topic>Cortical neurons</topic><topic>ECM-collagen hydrogel</topic><topic>Entrapment</topic><topic>Extracellular Matrix</topic><topic>Humans</topic><topic>Hydrogel</topic><topic>Hydrogels</topic><topic>Neurons - cytology</topic><topic>Primary Cell Culture - methods</topic><topic>Primary Cell Culture - standards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Doris</creatorcontrib><creatorcontrib>Enright, Heather A.</creatorcontrib><creatorcontrib>Peters, Sandra K.G.</creatorcontrib><creatorcontrib>Moya, Monica L.</creatorcontrib><creatorcontrib>Soscia, David A.</creatorcontrib><creatorcontrib>Cadena, Jose</creatorcontrib><creatorcontrib>Alvarado, Javier A.</creatorcontrib><creatorcontrib>Kulp, Kristen S.</creatorcontrib><creatorcontrib>Wheeler, Elizabeth K.</creatorcontrib><creatorcontrib>Fischer, Nicholas O.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, Doris</au><au>Enright, Heather A.</au><au>Peters, Sandra K.G.</au><au>Moya, Monica L.</au><au>Soscia, David A.</au><au>Cadena, Jose</au><au>Alvarado, Javier A.</au><au>Kulp, Kristen S.</au><au>Wheeler, Elizabeth K.</au><au>Fischer, Nicholas O.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>329</volume><issue>C</issue><spage>108460</spage><epage>108460</epage><pages>108460-108460</pages><artnum>108460</artnum><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>[Display omitted] •We evaluated the viability and distribution of cells in a 3D neuronal culture.•Culture conditions during collagen fibrillogenesis were systematically studied.•Homogeneous distribution was achieved by tuning cell concentration and CO2.•Percent cell viability was higher at lower cell concentrations and with CO2.•Optimization of seeding parameters is critical to reproduce 3D neuronal cultures. The emergence of three-dimensional (3D) cell culture in neural tissue engineering has significantly elevated the complexity and relevance of in vitro systems. This is due in large part to the incorporation of biomaterials to impart structural dimensionality on the neuronal cultures. However, a comprehensive understanding of how key seeding parameters affect changes in cell distribution and viability remain unreported. In this study, we systematically evaluated permutations in seeding conditions (i.e., cell concentration and atmospheric CO2 levels) to understand how these affect key parameters in 3D culture characterization (i.e., cell health and distribution). Primary rat cortical neurons (i.e., 2 × 106, 4 × 106, and 1 × 107 cells/mL) were entrapped in collagen blended with ECM proteins (ECM-Collagen) and exposed to atmospheric CO2 (i.e., 0 vs 5% CO2) during fibrillogenesis. At 14 days in vitro (DIV), cell distribution within the hydrogel was dependent on cell concentration and atmospheric CO2 during fibrillogenesis. A uniform distribution of cells was observed in cultures with 2 × 106 and 4 × 106 cells/mL in the presence of 5% CO2, while a heterogeneous distribution was observed in cultures with 1 × 107 cells/mL or in the absence of CO2. Furthermore, increased cell concentration was proportional to the rise in cell death at 14 DIV, although cells remain viable &gt;30 DIV. ECM-Collagen gels have been shown to increase cell viability of neurons long-term. In using ECM-collagen gels, we highlight the importance of optimizing seeding parameters and thorough 3D culture characterization to understand the neurophysiological responses of these 3D systems.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31626846</pmid><doi>10.1016/j.jneumeth.2019.108460</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3882-9514</orcidid><orcidid>https://orcid.org/0000-0001-7575-4390</orcidid><orcidid>https://orcid.org/0000000238829514</orcidid><orcidid>https://orcid.org/0000000175754390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2020-01, Vol.329 (C), p.108460-108460, Article 108460
issn 0165-0270
1872-678X
language eng
recordid cdi_osti_scitechconnect_1581896
source Elsevier
subjects 3D Neuronal culture
BASIC BIOLOGICAL SCIENCES
Cell Encapsulation - methods
Cell Encapsulation - standards
Cerebral Cortex - cytology
Collagen Type I
Cortical neurons
ECM-collagen hydrogel
Entrapment
Extracellular Matrix
Humans
Hydrogel
Hydrogels
Neurons - cytology
Primary Cell Culture - methods
Primary Cell Culture - standards
title Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20cell%20encapsulation%20condition%20in%20ECM-Collagen%20I%20hydrogels%20to%20support%203D%20neuronal%20cultures&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Lam,%20Doris&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-01-01&rft.volume=329&rft.issue=C&rft.spage=108460&rft.epage=108460&rft.pages=108460-108460&rft.artnum=108460&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2019.108460&rft_dat=%3Cproquest_osti_%3E2307128695%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-5c8dcc64d0616675e79c00ad6017dcff1ad80056b066e8b98b38377459af65063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307128695&rft_id=info:pmid/31626846&rfr_iscdi=true