Loading…
Benzene and toluene removal from synthetic automotive gasoline by mono and bicomponent adsorption process
•The oil and gas industry produces derivatives with a high content of toxic components.•Adsorption process was used in benzene and toluene removal.•Coconut shell-based activated carbon from coconut shell was used as adsorbent.•Experimental data were adjusted to empirical models.•The process proved t...
Saved in:
Published in: | Fuel (Guildford) 2018-11, Vol.231 (C), p.45-52 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •The oil and gas industry produces derivatives with a high content of toxic components.•Adsorption process was used in benzene and toluene removal.•Coconut shell-based activated carbon from coconut shell was used as adsorbent.•Experimental data were adjusted to empirical models.•The process proved to be appropriate for benzene and toluene removal.
The oil and gas industry produces derivatives with a high content of toxic components, which are already present in crude oil or can be generated during the refinery process, with a negative effect on human health. Thus, the objective of this work was to study benzene and toluene removal from synthetic gasoline, using coconut shell-based activated carbon (18 × 30 mesh) as adsorbent. From the results, in the monocomponent kinetics, 1.1 mmol/g of benzene and 1.8 mmol/g of toluene removal were obtained at room temperature. The influence of the initial contaminant concentration was evaluated and the adsorption kinetics equilibrium was reached up to 60 min. The maximum adsorption capacity obtained through the isotherms, for the monocomponent system was 2.05 mmol/g for benzene and 2.04 mmol/g for toluene; on the other hand, in the bicomponent system, the adsorption capacity for toluene (1.05 mmol/g) was higher than that of benzene (0.8 mmol/g) due to polarity and molar mass. In addition, for the bicomponent adsorption system, it was observed that the presence of two components reduced adsorption when compared to the monocomponent system. Thus, this process proved to be appropriate for benzene and toluene removal from automotive gasoline. |
---|---|
ISSN: | 0016-2361 1873-7153 |
DOI: | 10.1016/j.fuel.2018.04.169 |