Loading…

Dopant Distribution in Co-Free High-Energy Layered Cathode Materials

The practical implementation of Co-free, LiNiO2-derived cathodes has been prohibited by their poor cycle life and thermal stability, resulting from the structural instability, phase transformations, reactive surfaces, and chemomechanical breakdown. With the hierarchical distribution of Mg/Ti dual do...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2019-12, Vol.31 (23), p.9769-9776
Main Authors: Mu, Linqin, Zhang, Rui, Kan, Wang Hay, Zhang, Yan, Li, Luxi, Kuai, Chunguang, Zydlewski, Benjamin, Rahman, Muhammad Mominur, Sun, Cheng-Jun, Sainio, Sami, Avdeev, Maxim, Nordlund, Dennis, Xin, Huolin L, Lin, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a369t-c7c7844b996773807691826d4bde6a7e7fa7da516f4f28e5b49401aaa7e7116b3
cites cdi_FETCH-LOGICAL-a369t-c7c7844b996773807691826d4bde6a7e7fa7da516f4f28e5b49401aaa7e7116b3
container_end_page 9776
container_issue 23
container_start_page 9769
container_title Chemistry of materials
container_volume 31
creator Mu, Linqin
Zhang, Rui
Kan, Wang Hay
Zhang, Yan
Li, Luxi
Kuai, Chunguang
Zydlewski, Benjamin
Rahman, Muhammad Mominur
Sun, Cheng-Jun
Sainio, Sami
Avdeev, Maxim
Nordlund, Dennis
Xin, Huolin L
Lin, Feng
description The practical implementation of Co-free, LiNiO2-derived cathodes has been prohibited by their poor cycle life and thermal stability, resulting from the structural instability, phase transformations, reactive surfaces, and chemomechanical breakdown. With the hierarchical distribution of Mg/Ti dual dopants in LiNiO2, we report a Co-free layered oxide that exhibits enhanced bulk and surface stability. Ti shows a gradient distribution and is enriched at the surface, whereas Mg distributes homogeneously throughout the primary particles. The resulting Mg/Ti codoped LiNiO2 delivers a material-level specific energy of ∼780 W h/kg at C/10 with 96% retention after 50 cycles. The specific energy reaches ∼680 W h/kg at 1C with 77% retention after 300 cycles. Furthermore, the Mg/Ti dual dopants improve the rate capability, thermal stability, and self-discharge resistance of LiNiO2. Our synchrotron X-ray, electron, and electrochemical diagnostics reveal that the Mg/Ti dual dopants mitigate phase transformations, reduce nickel dissolution, and stabilize the cathode–electrolyte interface, thus leading to the favorable battery performance in lithium metal and graphite cells. The present study suggests that engineering the dopant distribution in cathodes may provide an effective path toward lower cost, safer, and higher energy density Co-free lithium batteries.
doi_str_mv 10.1021/acs.chemmater.9b03603
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1591635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b225314910</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-c7c7844b996773807691826d4bde6a7e7fa7da516f4f28e5b49401aaa7e7116b3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqXwCEgWu4udxHY8orQFpCIWmC3HuTSuqF3Z7tC3J1ErVqZ_-O-7030IPTK6YLRgz8amhR1gvzcZ4kK1tBS0vEIzxgtKOKXFNZrRWklSSS5u0V1KO0rZiNYztFyGg_EZL13K0bXH7ILHzuMmkHUEwG9uO5CVh7g94Y05QYQONyYPoQP8Md1z5ifdo5t-DHi45Bx9r1dfzRvZfL6-Ny8bYkqhMrHSyrqqWqWElGVNpVCsLkRXtR0II0H2RnaGM9FXfVEDbytVUWbMVDEm2nKOns57Q8pOJ-sy2MEG78FmzbhiouTjED8P2RhSitDrQ3R7E0-aUT350qMv_edLX3yNHDtzU70Lx-jHV_5hfgHLLXH1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dopant Distribution in Co-Free High-Energy Layered Cathode Materials</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Mu, Linqin ; Zhang, Rui ; Kan, Wang Hay ; Zhang, Yan ; Li, Luxi ; Kuai, Chunguang ; Zydlewski, Benjamin ; Rahman, Muhammad Mominur ; Sun, Cheng-Jun ; Sainio, Sami ; Avdeev, Maxim ; Nordlund, Dennis ; Xin, Huolin L ; Lin, Feng</creator><creatorcontrib>Mu, Linqin ; Zhang, Rui ; Kan, Wang Hay ; Zhang, Yan ; Li, Luxi ; Kuai, Chunguang ; Zydlewski, Benjamin ; Rahman, Muhammad Mominur ; Sun, Cheng-Jun ; Sainio, Sami ; Avdeev, Maxim ; Nordlund, Dennis ; Xin, Huolin L ; Lin, Feng ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The practical implementation of Co-free, LiNiO2-derived cathodes has been prohibited by their poor cycle life and thermal stability, resulting from the structural instability, phase transformations, reactive surfaces, and chemomechanical breakdown. With the hierarchical distribution of Mg/Ti dual dopants in LiNiO2, we report a Co-free layered oxide that exhibits enhanced bulk and surface stability. Ti shows a gradient distribution and is enriched at the surface, whereas Mg distributes homogeneously throughout the primary particles. The resulting Mg/Ti codoped LiNiO2 delivers a material-level specific energy of ∼780 W h/kg at C/10 with 96% retention after 50 cycles. The specific energy reaches ∼680 W h/kg at 1C with 77% retention after 300 cycles. Furthermore, the Mg/Ti dual dopants improve the rate capability, thermal stability, and self-discharge resistance of LiNiO2. Our synchrotron X-ray, electron, and electrochemical diagnostics reveal that the Mg/Ti dual dopants mitigate phase transformations, reduce nickel dissolution, and stabilize the cathode–electrolyte interface, thus leading to the favorable battery performance in lithium metal and graphite cells. The present study suggests that engineering the dopant distribution in cathodes may provide an effective path toward lower cost, safer, and higher energy density Co-free lithium batteries.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b03603</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE</subject><ispartof>Chemistry of materials, 2019-12, Vol.31 (23), p.9769-9776</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-c7c7844b996773807691826d4bde6a7e7fa7da516f4f28e5b49401aaa7e7116b3</citedby><cites>FETCH-LOGICAL-a369t-c7c7844b996773807691826d4bde6a7e7fa7da516f4f28e5b49401aaa7e7116b3</cites><orcidid>0000-0001-6814-456X ; 0000-0002-1663-2999 ; 0000-0003-4421-4820 ; 0000-0002-3729-3148 ; 0000-0002-9268-0124 ; 0000-0003-2366-5809 ; 0000000323665809 ; 0000000292680124 ; 0000000344214820 ; 0000000216632999 ; 000000016814456X ; 0000000237293148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1591635$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mu, Linqin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Kan, Wang Hay</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Li, Luxi</creatorcontrib><creatorcontrib>Kuai, Chunguang</creatorcontrib><creatorcontrib>Zydlewski, Benjamin</creatorcontrib><creatorcontrib>Rahman, Muhammad Mominur</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Sainio, Sami</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Xin, Huolin L</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Dopant Distribution in Co-Free High-Energy Layered Cathode Materials</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The practical implementation of Co-free, LiNiO2-derived cathodes has been prohibited by their poor cycle life and thermal stability, resulting from the structural instability, phase transformations, reactive surfaces, and chemomechanical breakdown. With the hierarchical distribution of Mg/Ti dual dopants in LiNiO2, we report a Co-free layered oxide that exhibits enhanced bulk and surface stability. Ti shows a gradient distribution and is enriched at the surface, whereas Mg distributes homogeneously throughout the primary particles. The resulting Mg/Ti codoped LiNiO2 delivers a material-level specific energy of ∼780 W h/kg at C/10 with 96% retention after 50 cycles. The specific energy reaches ∼680 W h/kg at 1C with 77% retention after 300 cycles. Furthermore, the Mg/Ti dual dopants improve the rate capability, thermal stability, and self-discharge resistance of LiNiO2. Our synchrotron X-ray, electron, and electrochemical diagnostics reveal that the Mg/Ti dual dopants mitigate phase transformations, reduce nickel dissolution, and stabilize the cathode–electrolyte interface, thus leading to the favorable battery performance in lithium metal and graphite cells. The present study suggests that engineering the dopant distribution in cathodes may provide an effective path toward lower cost, safer, and higher energy density Co-free lithium batteries.</description><subject>ENERGY STORAGE</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqXwCEgWu4udxHY8orQFpCIWmC3HuTSuqF3Z7tC3J1ErVqZ_-O-7030IPTK6YLRgz8amhR1gvzcZ4kK1tBS0vEIzxgtKOKXFNZrRWklSSS5u0V1KO0rZiNYztFyGg_EZL13K0bXH7ILHzuMmkHUEwG9uO5CVh7g94Y05QYQONyYPoQP8Md1z5ifdo5t-DHi45Bx9r1dfzRvZfL6-Ny8bYkqhMrHSyrqqWqWElGVNpVCsLkRXtR0II0H2RnaGM9FXfVEDbytVUWbMVDEm2nKOns57Q8pOJ-sy2MEG78FmzbhiouTjED8P2RhSitDrQ3R7E0-aUT350qMv_edLX3yNHDtzU70Lx-jHV_5hfgHLLXH1</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Mu, Linqin</creator><creator>Zhang, Rui</creator><creator>Kan, Wang Hay</creator><creator>Zhang, Yan</creator><creator>Li, Luxi</creator><creator>Kuai, Chunguang</creator><creator>Zydlewski, Benjamin</creator><creator>Rahman, Muhammad Mominur</creator><creator>Sun, Cheng-Jun</creator><creator>Sainio, Sami</creator><creator>Avdeev, Maxim</creator><creator>Nordlund, Dennis</creator><creator>Xin, Huolin L</creator><creator>Lin, Feng</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6814-456X</orcidid><orcidid>https://orcid.org/0000-0002-1663-2999</orcidid><orcidid>https://orcid.org/0000-0003-4421-4820</orcidid><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid><orcidid>https://orcid.org/0000-0002-9268-0124</orcidid><orcidid>https://orcid.org/0000-0003-2366-5809</orcidid><orcidid>https://orcid.org/0000000323665809</orcidid><orcidid>https://orcid.org/0000000292680124</orcidid><orcidid>https://orcid.org/0000000344214820</orcidid><orcidid>https://orcid.org/0000000216632999</orcidid><orcidid>https://orcid.org/000000016814456X</orcidid><orcidid>https://orcid.org/0000000237293148</orcidid></search><sort><creationdate>20191210</creationdate><title>Dopant Distribution in Co-Free High-Energy Layered Cathode Materials</title><author>Mu, Linqin ; Zhang, Rui ; Kan, Wang Hay ; Zhang, Yan ; Li, Luxi ; Kuai, Chunguang ; Zydlewski, Benjamin ; Rahman, Muhammad Mominur ; Sun, Cheng-Jun ; Sainio, Sami ; Avdeev, Maxim ; Nordlund, Dennis ; Xin, Huolin L ; Lin, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-c7c7844b996773807691826d4bde6a7e7fa7da516f4f28e5b49401aaa7e7116b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ENERGY STORAGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Linqin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Kan, Wang Hay</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Li, Luxi</creatorcontrib><creatorcontrib>Kuai, Chunguang</creatorcontrib><creatorcontrib>Zydlewski, Benjamin</creatorcontrib><creatorcontrib>Rahman, Muhammad Mominur</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Sainio, Sami</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Xin, Huolin L</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Linqin</au><au>Zhang, Rui</au><au>Kan, Wang Hay</au><au>Zhang, Yan</au><au>Li, Luxi</au><au>Kuai, Chunguang</au><au>Zydlewski, Benjamin</au><au>Rahman, Muhammad Mominur</au><au>Sun, Cheng-Jun</au><au>Sainio, Sami</au><au>Avdeev, Maxim</au><au>Nordlund, Dennis</au><au>Xin, Huolin L</au><au>Lin, Feng</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopant Distribution in Co-Free High-Energy Layered Cathode Materials</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>31</volume><issue>23</issue><spage>9769</spage><epage>9776</epage><pages>9769-9776</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The practical implementation of Co-free, LiNiO2-derived cathodes has been prohibited by their poor cycle life and thermal stability, resulting from the structural instability, phase transformations, reactive surfaces, and chemomechanical breakdown. With the hierarchical distribution of Mg/Ti dual dopants in LiNiO2, we report a Co-free layered oxide that exhibits enhanced bulk and surface stability. Ti shows a gradient distribution and is enriched at the surface, whereas Mg distributes homogeneously throughout the primary particles. The resulting Mg/Ti codoped LiNiO2 delivers a material-level specific energy of ∼780 W h/kg at C/10 with 96% retention after 50 cycles. The specific energy reaches ∼680 W h/kg at 1C with 77% retention after 300 cycles. Furthermore, the Mg/Ti dual dopants improve the rate capability, thermal stability, and self-discharge resistance of LiNiO2. Our synchrotron X-ray, electron, and electrochemical diagnostics reveal that the Mg/Ti dual dopants mitigate phase transformations, reduce nickel dissolution, and stabilize the cathode–electrolyte interface, thus leading to the favorable battery performance in lithium metal and graphite cells. The present study suggests that engineering the dopant distribution in cathodes may provide an effective path toward lower cost, safer, and higher energy density Co-free lithium batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b03603</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6814-456X</orcidid><orcidid>https://orcid.org/0000-0002-1663-2999</orcidid><orcidid>https://orcid.org/0000-0003-4421-4820</orcidid><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid><orcidid>https://orcid.org/0000-0002-9268-0124</orcidid><orcidid>https://orcid.org/0000-0003-2366-5809</orcidid><orcidid>https://orcid.org/0000000323665809</orcidid><orcidid>https://orcid.org/0000000292680124</orcidid><orcidid>https://orcid.org/0000000344214820</orcidid><orcidid>https://orcid.org/0000000216632999</orcidid><orcidid>https://orcid.org/000000016814456X</orcidid><orcidid>https://orcid.org/0000000237293148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2019-12, Vol.31 (23), p.9769-9776
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1591635
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects ENERGY STORAGE
title Dopant Distribution in Co-Free High-Energy Layered Cathode Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopant%20Distribution%20in%20Co-Free%20High-Energy%20Layered%20Cathode%20Materials&rft.jtitle=Chemistry%20of%20materials&rft.au=Mu,%20Linqin&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-12-10&rft.volume=31&rft.issue=23&rft.spage=9769&rft.epage=9776&rft.pages=9769-9776&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b03603&rft_dat=%3Cacs_osti_%3Eb225314910%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a369t-c7c7844b996773807691826d4bde6a7e7fa7da516f4f28e5b49401aaa7e7116b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true