Loading…

Ultrathin silicon oxide prepared by in-line plasma-assisted N2O oxidation (PANO) and the application for n-type polysilicon passivated contact

We develop a plasma-assisted nitrous-oxide (N2O) gas oxidation (PANO) method to prepare the ultrathin silicon oxide (SiOx) for polysilicon (poly-Si) passivated contact. The effects of preparation conditions, including the substrate temperature, processing time, and plasma power, are studied. Afterwa...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells 2020-05, Vol.208 (C), p.110389, Article 110389
Main Authors: Huang, Yuqing, Liao, Mingdun, Wang, Zhixue, Guo, Xueqi, Jiang, Chunsheng, Yang, Qing, Yuan, Zhizhong, Huang, Dandan, Yang, Jie, Zhang, Xinyu, Wang, Qi, Jin, Hao, Al-Jassim, Mowafak, Shou, Chunhui, Zeng, Yuheng, Yan, Baojie, Ye, Jichun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-b26a6500aba3f88a8764c39ec7e8ed73f14d30f0c4e6f4b6c94ad97d89d319123
cites cdi_FETCH-LOGICAL-c407t-b26a6500aba3f88a8764c39ec7e8ed73f14d30f0c4e6f4b6c94ad97d89d319123
container_end_page
container_issue C
container_start_page 110389
container_title Solar energy materials and solar cells
container_volume 208
creator Huang, Yuqing
Liao, Mingdun
Wang, Zhixue
Guo, Xueqi
Jiang, Chunsheng
Yang, Qing
Yuan, Zhizhong
Huang, Dandan
Yang, Jie
Zhang, Xinyu
Wang, Qi
Jin, Hao
Al-Jassim, Mowafak
Shou, Chunhui
Zeng, Yuheng
Yan, Baojie
Ye, Jichun
description We develop a plasma-assisted nitrous-oxide (N2O) gas oxidation (PANO) method to prepare the ultrathin silicon oxide (SiOx) for polysilicon (poly-Si) passivated contact. The effects of preparation conditions, including the substrate temperature, processing time, and plasma power, are studied. Afterwards, we integrate the PANO SiOx into the polysilicon passivated contact and optimize the passivation and contact performances. Excellent surface passivation with the n-type poly-Si and PANO SiOx on the n-type c-Si wafer is achieved by 880 °C annealing, which shows competitive passivation quality to the one with NASO SiOx. Champion implied open-circuit voltage (iVoc) and single-sided recombination saturated current (J0) reach 730 mV and 4.3 fA/cm2 after crystallization; and they are further improved to 747 mV and 2.0 fA/cm2 (3 × 1015cm−3) after subsequent AlOx/SiNx hydrogenation. Using transmission electron microscopy (TEM), we find that the thickness of PANO SiOx ranges 1.1–2.4 nm and the controlled nitric acid oxidized SiOx (NAOS) ranges 1.3–1.8 nm. The contact resistivity (ρc) is typically 820 °C. Also, the crystallinity, phosphorous in-diffusion profile, and current-leaking density of the passivated contacts are investigated. In general, the PANO SiOx and in-situ doping amorphous silicon precursor can be fabricated in one PECVD system without additional equipment or transfer procedures, which is favorable for the high-efficiency, low-cost industrial manufacture. •Ultrathin SiOx prepared by in-line plasma-assisted N2O oxidation (PANO) is used for passivated contact.•Passivated contact with PANO SiOx shows competitive quality to that with NASO SiOx.•Champion surface passivation reaches iVoc = 747 mV &J0 = 2.0 fA/cm2 after hydrogenation.•Contact resistivity becomes  820 °C.•Oxidation degree, thickness, and pinhole are characterized for robust passivated contact with PANO SiOx.
doi_str_mv 10.1016/j.solmat.2019.110389
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1592396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024819307159</els_id><sourcerecordid>2441308791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-b26a6500aba3f88a8764c39ec7e8ed73f14d30f0c4e6f4b6c94ad97d89d319123</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhYnRxHb0DVwQ3eiiWv6mCjYmk4l_yWTahbMmt-FWmk41lMBMpl_CZ5aydOuKwD3n48Ah5DVnW854_-G4LWk6Qd0Kxs2Wcya1eUI2XA-mk9Lop2TDjBg6JpR-Tl6UcmSMiV6qDfl1N9UM9RAiLWEKLkWaHoNHOmecIaOn-zMNsZtCbGcTlBN0UEootY1uxe6PGmpovnffr2537ylET-sBKcxz462jMWUau3qeGyNN5383zQvpARZU21Zw9SV5NsJU8NXf9YLcff704_prd7P78u366qZzig2124se-kvGYA9y1Br00CsnDboBNfpBjlx5yUbmFPaj2vfOKPBm8Np4yQ0X8oK8Wbmp1GCLCxXdoWWI6Krll0ZI0zfR21U05_TzHku1x3SfY8tlhVJcsva_vKnUqnI5lZJxtHMOJ8hny5ld6rFHu9Zjl3rsWk-zfVxt2J75EDAvKTA69CEvIXwK_wf8Bt51nE4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441308791</pqid></control><display><type>article</type><title>Ultrathin silicon oxide prepared by in-line plasma-assisted N2O oxidation (PANO) and the application for n-type polysilicon passivated contact</title><source>ScienceDirect Journals</source><creator>Huang, Yuqing ; Liao, Mingdun ; Wang, Zhixue ; Guo, Xueqi ; Jiang, Chunsheng ; Yang, Qing ; Yuan, Zhizhong ; Huang, Dandan ; Yang, Jie ; Zhang, Xinyu ; Wang, Qi ; Jin, Hao ; Al-Jassim, Mowafak ; Shou, Chunhui ; Zeng, Yuheng ; Yan, Baojie ; Ye, Jichun</creator><creatorcontrib>Huang, Yuqing ; Liao, Mingdun ; Wang, Zhixue ; Guo, Xueqi ; Jiang, Chunsheng ; Yang, Qing ; Yuan, Zhizhong ; Huang, Dandan ; Yang, Jie ; Zhang, Xinyu ; Wang, Qi ; Jin, Hao ; Al-Jassim, Mowafak ; Shou, Chunhui ; Zeng, Yuheng ; Yan, Baojie ; Ye, Jichun ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>We develop a plasma-assisted nitrous-oxide (N2O) gas oxidation (PANO) method to prepare the ultrathin silicon oxide (SiOx) for polysilicon (poly-Si) passivated contact. The effects of preparation conditions, including the substrate temperature, processing time, and plasma power, are studied. Afterwards, we integrate the PANO SiOx into the polysilicon passivated contact and optimize the passivation and contact performances. Excellent surface passivation with the n-type poly-Si and PANO SiOx on the n-type c-Si wafer is achieved by 880 °C annealing, which shows competitive passivation quality to the one with NASO SiOx. Champion implied open-circuit voltage (iVoc) and single-sided recombination saturated current (J0) reach 730 mV and 4.3 fA/cm2 after crystallization; and they are further improved to 747 mV and 2.0 fA/cm2 (3 × 1015cm−3) after subsequent AlOx/SiNx hydrogenation. Using transmission electron microscopy (TEM), we find that the thickness of PANO SiOx ranges 1.1–2.4 nm and the controlled nitric acid oxidized SiOx (NAOS) ranges 1.3–1.8 nm. The contact resistivity (ρc) is typically &lt;10 mΩ cm2 with the annealing temperature of &gt;820 °C. Also, the crystallinity, phosphorous in-diffusion profile, and current-leaking density of the passivated contacts are investigated. In general, the PANO SiOx and in-situ doping amorphous silicon precursor can be fabricated in one PECVD system without additional equipment or transfer procedures, which is favorable for the high-efficiency, low-cost industrial manufacture. •Ultrathin SiOx prepared by in-line plasma-assisted N2O oxidation (PANO) is used for passivated contact.•Passivated contact with PANO SiOx shows competitive quality to that with NASO SiOx.•Champion surface passivation reaches iVoc = 747 mV &amp;J0 = 2.0 fA/cm2 after hydrogenation.•Contact resistivity becomes &lt;10 mΩ cm2 if annealing temperature is &gt; 820 °C.•Oxidation degree, thickness, and pinhole are characterized for robust passivated contact with PANO SiOx.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2019.110389</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amorphous silicon ; Annealing ; Chemical vapor deposition ; Circuits ; Crystallization ; MATERIALS SCIENCE ; Nitric acid ; Nitrous oxide ; Open circuit voltage ; Oxidation ; Passivity ; Plasma-assisted N2O oxidation ; Polysilicon ; Polysilicon passivated contact ; Recombination ; Silicon ; Silicon oxide ; Silicon oxides ; SOLAR ENERGY ; Substrates ; Temperature ; TOPCon ; Transmission electron microscopy ; Ultrathin silicon oxide</subject><ispartof>Solar energy materials and solar cells, 2020-05, Vol.208 (C), p.110389, Article 110389</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-b26a6500aba3f88a8764c39ec7e8ed73f14d30f0c4e6f4b6c94ad97d89d319123</citedby><cites>FETCH-LOGICAL-c407t-b26a6500aba3f88a8764c39ec7e8ed73f14d30f0c4e6f4b6c94ad97d89d319123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1592396$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yuqing</creatorcontrib><creatorcontrib>Liao, Mingdun</creatorcontrib><creatorcontrib>Wang, Zhixue</creatorcontrib><creatorcontrib>Guo, Xueqi</creatorcontrib><creatorcontrib>Jiang, Chunsheng</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Yuan, Zhizhong</creatorcontrib><creatorcontrib>Huang, Dandan</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Jin, Hao</creatorcontrib><creatorcontrib>Al-Jassim, Mowafak</creatorcontrib><creatorcontrib>Shou, Chunhui</creatorcontrib><creatorcontrib>Zeng, Yuheng</creatorcontrib><creatorcontrib>Yan, Baojie</creatorcontrib><creatorcontrib>Ye, Jichun</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Ultrathin silicon oxide prepared by in-line plasma-assisted N2O oxidation (PANO) and the application for n-type polysilicon passivated contact</title><title>Solar energy materials and solar cells</title><description>We develop a plasma-assisted nitrous-oxide (N2O) gas oxidation (PANO) method to prepare the ultrathin silicon oxide (SiOx) for polysilicon (poly-Si) passivated contact. The effects of preparation conditions, including the substrate temperature, processing time, and plasma power, are studied. Afterwards, we integrate the PANO SiOx into the polysilicon passivated contact and optimize the passivation and contact performances. Excellent surface passivation with the n-type poly-Si and PANO SiOx on the n-type c-Si wafer is achieved by 880 °C annealing, which shows competitive passivation quality to the one with NASO SiOx. Champion implied open-circuit voltage (iVoc) and single-sided recombination saturated current (J0) reach 730 mV and 4.3 fA/cm2 after crystallization; and they are further improved to 747 mV and 2.0 fA/cm2 (3 × 1015cm−3) after subsequent AlOx/SiNx hydrogenation. Using transmission electron microscopy (TEM), we find that the thickness of PANO SiOx ranges 1.1–2.4 nm and the controlled nitric acid oxidized SiOx (NAOS) ranges 1.3–1.8 nm. The contact resistivity (ρc) is typically &lt;10 mΩ cm2 with the annealing temperature of &gt;820 °C. Also, the crystallinity, phosphorous in-diffusion profile, and current-leaking density of the passivated contacts are investigated. In general, the PANO SiOx and in-situ doping amorphous silicon precursor can be fabricated in one PECVD system without additional equipment or transfer procedures, which is favorable for the high-efficiency, low-cost industrial manufacture. •Ultrathin SiOx prepared by in-line plasma-assisted N2O oxidation (PANO) is used for passivated contact.•Passivated contact with PANO SiOx shows competitive quality to that with NASO SiOx.•Champion surface passivation reaches iVoc = 747 mV &amp;J0 = 2.0 fA/cm2 after hydrogenation.•Contact resistivity becomes &lt;10 mΩ cm2 if annealing temperature is &gt; 820 °C.•Oxidation degree, thickness, and pinhole are characterized for robust passivated contact with PANO SiOx.</description><subject>Amorphous silicon</subject><subject>Annealing</subject><subject>Chemical vapor deposition</subject><subject>Circuits</subject><subject>Crystallization</subject><subject>MATERIALS SCIENCE</subject><subject>Nitric acid</subject><subject>Nitrous oxide</subject><subject>Open circuit voltage</subject><subject>Oxidation</subject><subject>Passivity</subject><subject>Plasma-assisted N2O oxidation</subject><subject>Polysilicon</subject><subject>Polysilicon passivated contact</subject><subject>Recombination</subject><subject>Silicon</subject><subject>Silicon oxide</subject><subject>Silicon oxides</subject><subject>SOLAR ENERGY</subject><subject>Substrates</subject><subject>Temperature</subject><subject>TOPCon</subject><subject>Transmission electron microscopy</subject><subject>Ultrathin silicon oxide</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc2OFCEUhYnRxHb0DVwQ3eiiWv6mCjYmk4l_yWTahbMmt-FWmk41lMBMpl_CZ5aydOuKwD3n48Ah5DVnW854_-G4LWk6Qd0Kxs2Wcya1eUI2XA-mk9Lop2TDjBg6JpR-Tl6UcmSMiV6qDfl1N9UM9RAiLWEKLkWaHoNHOmecIaOn-zMNsZtCbGcTlBN0UEootY1uxe6PGmpovnffr2537ylET-sBKcxz462jMWUau3qeGyNN5383zQvpARZU21Zw9SV5NsJU8NXf9YLcff704_prd7P78u366qZzig2124se-kvGYA9y1Br00CsnDboBNfpBjlx5yUbmFPaj2vfOKPBm8Np4yQ0X8oK8Wbmp1GCLCxXdoWWI6Krll0ZI0zfR21U05_TzHku1x3SfY8tlhVJcsva_vKnUqnI5lZJxtHMOJ8hny5ld6rFHu9Zjl3rsWk-zfVxt2J75EDAvKTA69CEvIXwK_wf8Bt51nE4</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Huang, Yuqing</creator><creator>Liao, Mingdun</creator><creator>Wang, Zhixue</creator><creator>Guo, Xueqi</creator><creator>Jiang, Chunsheng</creator><creator>Yang, Qing</creator><creator>Yuan, Zhizhong</creator><creator>Huang, Dandan</creator><creator>Yang, Jie</creator><creator>Zhang, Xinyu</creator><creator>Wang, Qi</creator><creator>Jin, Hao</creator><creator>Al-Jassim, Mowafak</creator><creator>Shou, Chunhui</creator><creator>Zeng, Yuheng</creator><creator>Yan, Baojie</creator><creator>Ye, Jichun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200501</creationdate><title>Ultrathin silicon oxide prepared by in-line plasma-assisted N2O oxidation (PANO) and the application for n-type polysilicon passivated contact</title><author>Huang, Yuqing ; Liao, Mingdun ; Wang, Zhixue ; Guo, Xueqi ; Jiang, Chunsheng ; Yang, Qing ; Yuan, Zhizhong ; Huang, Dandan ; Yang, Jie ; Zhang, Xinyu ; Wang, Qi ; Jin, Hao ; Al-Jassim, Mowafak ; Shou, Chunhui ; Zeng, Yuheng ; Yan, Baojie ; Ye, Jichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-b26a6500aba3f88a8764c39ec7e8ed73f14d30f0c4e6f4b6c94ad97d89d319123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amorphous silicon</topic><topic>Annealing</topic><topic>Chemical vapor deposition</topic><topic>Circuits</topic><topic>Crystallization</topic><topic>MATERIALS SCIENCE</topic><topic>Nitric acid</topic><topic>Nitrous oxide</topic><topic>Open circuit voltage</topic><topic>Oxidation</topic><topic>Passivity</topic><topic>Plasma-assisted N2O oxidation</topic><topic>Polysilicon</topic><topic>Polysilicon passivated contact</topic><topic>Recombination</topic><topic>Silicon</topic><topic>Silicon oxide</topic><topic>Silicon oxides</topic><topic>SOLAR ENERGY</topic><topic>Substrates</topic><topic>Temperature</topic><topic>TOPCon</topic><topic>Transmission electron microscopy</topic><topic>Ultrathin silicon oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yuqing</creatorcontrib><creatorcontrib>Liao, Mingdun</creatorcontrib><creatorcontrib>Wang, Zhixue</creatorcontrib><creatorcontrib>Guo, Xueqi</creatorcontrib><creatorcontrib>Jiang, Chunsheng</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Yuan, Zhizhong</creatorcontrib><creatorcontrib>Huang, Dandan</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Jin, Hao</creatorcontrib><creatorcontrib>Al-Jassim, Mowafak</creatorcontrib><creatorcontrib>Shou, Chunhui</creatorcontrib><creatorcontrib>Zeng, Yuheng</creatorcontrib><creatorcontrib>Yan, Baojie</creatorcontrib><creatorcontrib>Ye, Jichun</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yuqing</au><au>Liao, Mingdun</au><au>Wang, Zhixue</au><au>Guo, Xueqi</au><au>Jiang, Chunsheng</au><au>Yang, Qing</au><au>Yuan, Zhizhong</au><au>Huang, Dandan</au><au>Yang, Jie</au><au>Zhang, Xinyu</au><au>Wang, Qi</au><au>Jin, Hao</au><au>Al-Jassim, Mowafak</au><au>Shou, Chunhui</au><au>Zeng, Yuheng</au><au>Yan, Baojie</au><au>Ye, Jichun</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin silicon oxide prepared by in-line plasma-assisted N2O oxidation (PANO) and the application for n-type polysilicon passivated contact</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>208</volume><issue>C</issue><spage>110389</spage><pages>110389-</pages><artnum>110389</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>We develop a plasma-assisted nitrous-oxide (N2O) gas oxidation (PANO) method to prepare the ultrathin silicon oxide (SiOx) for polysilicon (poly-Si) passivated contact. The effects of preparation conditions, including the substrate temperature, processing time, and plasma power, are studied. Afterwards, we integrate the PANO SiOx into the polysilicon passivated contact and optimize the passivation and contact performances. Excellent surface passivation with the n-type poly-Si and PANO SiOx on the n-type c-Si wafer is achieved by 880 °C annealing, which shows competitive passivation quality to the one with NASO SiOx. Champion implied open-circuit voltage (iVoc) and single-sided recombination saturated current (J0) reach 730 mV and 4.3 fA/cm2 after crystallization; and they are further improved to 747 mV and 2.0 fA/cm2 (3 × 1015cm−3) after subsequent AlOx/SiNx hydrogenation. Using transmission electron microscopy (TEM), we find that the thickness of PANO SiOx ranges 1.1–2.4 nm and the controlled nitric acid oxidized SiOx (NAOS) ranges 1.3–1.8 nm. The contact resistivity (ρc) is typically &lt;10 mΩ cm2 with the annealing temperature of &gt;820 °C. Also, the crystallinity, phosphorous in-diffusion profile, and current-leaking density of the passivated contacts are investigated. In general, the PANO SiOx and in-situ doping amorphous silicon precursor can be fabricated in one PECVD system without additional equipment or transfer procedures, which is favorable for the high-efficiency, low-cost industrial manufacture. •Ultrathin SiOx prepared by in-line plasma-assisted N2O oxidation (PANO) is used for passivated contact.•Passivated contact with PANO SiOx shows competitive quality to that with NASO SiOx.•Champion surface passivation reaches iVoc = 747 mV &amp;J0 = 2.0 fA/cm2 after hydrogenation.•Contact resistivity becomes &lt;10 mΩ cm2 if annealing temperature is &gt; 820 °C.•Oxidation degree, thickness, and pinhole are characterized for robust passivated contact with PANO SiOx.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2019.110389</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2020-05, Vol.208 (C), p.110389, Article 110389
issn 0927-0248
1879-3398
language eng
recordid cdi_osti_scitechconnect_1592396
source ScienceDirect Journals
subjects Amorphous silicon
Annealing
Chemical vapor deposition
Circuits
Crystallization
MATERIALS SCIENCE
Nitric acid
Nitrous oxide
Open circuit voltage
Oxidation
Passivity
Plasma-assisted N2O oxidation
Polysilicon
Polysilicon passivated contact
Recombination
Silicon
Silicon oxide
Silicon oxides
SOLAR ENERGY
Substrates
Temperature
TOPCon
Transmission electron microscopy
Ultrathin silicon oxide
title Ultrathin silicon oxide prepared by in-line plasma-assisted N2O oxidation (PANO) and the application for n-type polysilicon passivated contact
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20silicon%20oxide%20prepared%20by%20in-line%20plasma-assisted%20N2O%20oxidation%20(PANO)%20and%20the%20application%20for%20n-type%20polysilicon%20passivated%20contact&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Huang,%20Yuqing&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-05-01&rft.volume=208&rft.issue=C&rft.spage=110389&rft.pages=110389-&rft.artnum=110389&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2019.110389&rft_dat=%3Cproquest_osti_%3E2441308791%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-b26a6500aba3f88a8764c39ec7e8ed73f14d30f0c4e6f4b6c94ad97d89d319123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441308791&rft_id=info:pmid/&rfr_iscdi=true