Loading…
Ultrafast polarization of an electron beam in an intense bichromatic laser field
In this work, we demonstrate the radiative polarization of high-energy electron beams in collisions with ultrashort pulsed bichromatic laser fields. Employing a Boltzmann kinetic approach for the electron distribution allows us to simulate the beam polarization over a wide range of parameters and de...
Saved in:
Published in: | Physical review. A 2019-12, Vol.100 (6), Article 061402 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we demonstrate the radiative polarization of high-energy electron beams in collisions with ultrashort pulsed bichromatic laser fields. Employing a Boltzmann kinetic approach for the electron distribution allows us to simulate the beam polarization over a wide range of parameters and determine the optimum conditions for maximum radiative polarization. Those results are contrasted with a Monte Carlo algorithm where photon emission and associated spin effects are treated fully quantum mechanically using spin-dependent photon emission rates. The latter method includes realistic focusing laser fields, which allows us to simulate a near-term experimentally feasible scenario of an 8 GeV electron beam scattering from a 1 PW laser pulse and provide a measurement that would verify the ultrafast radiative polarization in high-intensity laser pulses that we predict. Aspects of spin-dependent radiation reaction are also discussed, with spin polarization leading to a measurable (5%) splitting of the energies of spin-up and spin-down electrons. |
---|---|
ISSN: | 2469-9926 2469-9934 |
DOI: | 10.1103/PhysRevA.100.061402 |