Loading…

High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor

The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge-transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near-ultraviolet-harvesting OPVs—has largely no...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2019-11, Vol.9 (48)
Main Authors: Davy, Nicholas C., Koch, Marius, Ngongang Ndjawa, Guy Olivier, Lin, Xin, Man, Gabriel J., Lin, YunHui L., Sorli, Jeni C., Rand, Barry P., Kahn, Antoine, Scholes, Gregory D., Loo, Yueh‐Lin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 48
container_start_page
container_title Advanced energy materials
container_volume 9
creator Davy, Nicholas C.
Koch, Marius
Ngongang Ndjawa, Guy Olivier
Lin, Xin
Man, Gabriel J.
Lin, YunHui L.
Sorli, Jeni C.
Rand, Barry P.
Kahn, Antoine
Scholes, Gregory D.
Loo, Yueh‐Lin
description The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge-transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near-ultraviolet-harvesting OPVs—has largely not been investigated. Here, aggregation-induced room-temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open-circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy-band splitting result in ultrafast CT and charge separation with nonradiative energy losses of
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1595395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1595395</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15953953</originalsourceid><addsrcrecordid>eNqNjMFqAkEQRAeJEIn-Q5P7wG52FT1KUDaXJKB4lWZsZzuM0zLTLnrPh2cTQs4pCqqgHjUwo3JW1nY2r4u7v1493ZtJzh9Fr3pRFlU1Mp8N-9buJCh6gvdWVDxFSqgsEVZXFy6ZOwo36Bhh6X0i_7PZl3i4ODrANvE5kMJGUSkDR0BoCLubXaqc7DoRwavEc8CICd6Sx8gONnRiJ98XKmlshkcMmSa_-WAe16vtc2MlK--zYyXX9nQkp_tyuphWvf8FfQH8gVRj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Davy, Nicholas C. ; Koch, Marius ; Ngongang Ndjawa, Guy Olivier ; Lin, Xin ; Man, Gabriel J. ; Lin, YunHui L. ; Sorli, Jeni C. ; Rand, Barry P. ; Kahn, Antoine ; Scholes, Gregory D. ; Loo, Yueh‐Lin</creator><creatorcontrib>Davy, Nicholas C. ; Koch, Marius ; Ngongang Ndjawa, Guy Olivier ; Lin, Xin ; Man, Gabriel J. ; Lin, YunHui L. ; Sorli, Jeni C. ; Rand, Barry P. ; Kahn, Antoine ; Scholes, Gregory D. ; Loo, Yueh‐Lin ; Princeton Univ., NJ (United States)</creatorcontrib><description>The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge-transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near-ultraviolet-harvesting OPVs—has largely not been investigated. Here, aggregation-induced room-temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open-circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy-band splitting result in ultrafast CT and charge separation with nonradiative energy losses of &lt;250 meV, suggesting that a 0.1 eV driving force is sufficient for charge separation, with entropic gain via CT state delocalization being the main driver for exciton dissociation and generation of free charges. This finding can inform engineering of next-generation active materials and films for near-ultraviolet OPVs with open-circuit voltages exceeding 2 V. Contrary to general belief, this work reveals that exclusive and efficient ISC need not require heavy-atom-containing active materials. Molecular aggregation through thin-film processing provides an alternative route to accessing 100% triplet states on photoexcitation.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>electro-optical materials ; ENERGY STORAGE ; intersystem crossing ; luminescence ; Organic electronics ; photovoltaic devices ; solar cells ; triplet excitons</subject><ispartof>Advanced energy materials, 2019-11, Vol.9 (48)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000242840847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1595395$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Davy, Nicholas C.</creatorcontrib><creatorcontrib>Koch, Marius</creatorcontrib><creatorcontrib>Ngongang Ndjawa, Guy Olivier</creatorcontrib><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Man, Gabriel J.</creatorcontrib><creatorcontrib>Lin, YunHui L.</creatorcontrib><creatorcontrib>Sorli, Jeni C.</creatorcontrib><creatorcontrib>Rand, Barry P.</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Loo, Yueh‐Lin</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><title>High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor</title><title>Advanced energy materials</title><description>The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge-transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near-ultraviolet-harvesting OPVs—has largely not been investigated. Here, aggregation-induced room-temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open-circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy-band splitting result in ultrafast CT and charge separation with nonradiative energy losses of &lt;250 meV, suggesting that a 0.1 eV driving force is sufficient for charge separation, with entropic gain via CT state delocalization being the main driver for exciton dissociation and generation of free charges. This finding can inform engineering of next-generation active materials and films for near-ultraviolet OPVs with open-circuit voltages exceeding 2 V. Contrary to general belief, this work reveals that exclusive and efficient ISC need not require heavy-atom-containing active materials. Molecular aggregation through thin-film processing provides an alternative route to accessing 100% triplet states on photoexcitation.</description><subject>electro-optical materials</subject><subject>ENERGY STORAGE</subject><subject>intersystem crossing</subject><subject>luminescence</subject><subject>Organic electronics</subject><subject>photovoltaic devices</subject><subject>solar cells</subject><subject>triplet excitons</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNjMFqAkEQRAeJEIn-Q5P7wG52FT1KUDaXJKB4lWZsZzuM0zLTLnrPh2cTQs4pCqqgHjUwo3JW1nY2r4u7v1493ZtJzh9Fr3pRFlU1Mp8N-9buJCh6gvdWVDxFSqgsEVZXFy6ZOwo36Bhh6X0i_7PZl3i4ODrANvE5kMJGUSkDR0BoCLubXaqc7DoRwavEc8CICd6Sx8gONnRiJ98XKmlshkcMmSa_-WAe16vtc2MlK--zYyXX9nQkp_tyuphWvf8FfQH8gVRj</recordid><startdate>20191119</startdate><enddate>20191119</enddate><creator>Davy, Nicholas C.</creator><creator>Koch, Marius</creator><creator>Ngongang Ndjawa, Guy Olivier</creator><creator>Lin, Xin</creator><creator>Man, Gabriel J.</creator><creator>Lin, YunHui L.</creator><creator>Sorli, Jeni C.</creator><creator>Rand, Barry P.</creator><creator>Kahn, Antoine</creator><creator>Scholes, Gregory D.</creator><creator>Loo, Yueh‐Lin</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000242840847</orcidid></search><sort><creationdate>20191119</creationdate><title>High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor</title><author>Davy, Nicholas C. ; Koch, Marius ; Ngongang Ndjawa, Guy Olivier ; Lin, Xin ; Man, Gabriel J. ; Lin, YunHui L. ; Sorli, Jeni C. ; Rand, Barry P. ; Kahn, Antoine ; Scholes, Gregory D. ; Loo, Yueh‐Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15953953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>electro-optical materials</topic><topic>ENERGY STORAGE</topic><topic>intersystem crossing</topic><topic>luminescence</topic><topic>Organic electronics</topic><topic>photovoltaic devices</topic><topic>solar cells</topic><topic>triplet excitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davy, Nicholas C.</creatorcontrib><creatorcontrib>Koch, Marius</creatorcontrib><creatorcontrib>Ngongang Ndjawa, Guy Olivier</creatorcontrib><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Man, Gabriel J.</creatorcontrib><creatorcontrib>Lin, YunHui L.</creatorcontrib><creatorcontrib>Sorli, Jeni C.</creatorcontrib><creatorcontrib>Rand, Barry P.</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Loo, Yueh‐Lin</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davy, Nicholas C.</au><au>Koch, Marius</au><au>Ngongang Ndjawa, Guy Olivier</au><au>Lin, Xin</au><au>Man, Gabriel J.</au><au>Lin, YunHui L.</au><au>Sorli, Jeni C.</au><au>Rand, Barry P.</au><au>Kahn, Antoine</au><au>Scholes, Gregory D.</au><au>Loo, Yueh‐Lin</au><aucorp>Princeton Univ., NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor</atitle><jtitle>Advanced energy materials</jtitle><date>2019-11-19</date><risdate>2019</risdate><volume>9</volume><issue>48</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge-transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near-ultraviolet-harvesting OPVs—has largely not been investigated. Here, aggregation-induced room-temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open-circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy-band splitting result in ultrafast CT and charge separation with nonradiative energy losses of &lt;250 meV, suggesting that a 0.1 eV driving force is sufficient for charge separation, with entropic gain via CT state delocalization being the main driver for exciton dissociation and generation of free charges. This finding can inform engineering of next-generation active materials and films for near-ultraviolet OPVs with open-circuit voltages exceeding 2 V. Contrary to general belief, this work reveals that exclusive and efficient ISC need not require heavy-atom-containing active materials. Molecular aggregation through thin-film processing provides an alternative route to accessing 100% triplet states on photoexcitation.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000242840847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-11, Vol.9 (48)
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1595395
source Wiley-Blackwell Read & Publish Collection
subjects electro-optical materials
ENERGY STORAGE
intersystem crossing
luminescence
Organic electronics
photovoltaic devices
solar cells
triplet excitons
title High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Voltage%20Photogeneration%20Exclusively%20via%20Aggregation-Induced%20Triplet%20States%20in%20a%20Heavy-Atom-Free%20Nonplanar%20Organic%20Semiconductor&rft.jtitle=Advanced%20energy%20materials&rft.au=Davy,%20Nicholas%20C.&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2019-11-19&rft.volume=9&rft.issue=48&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/&rft_dat=%3Costi%3E1595395%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_15953953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true