Loading…
High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor
The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge-transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near-ultraviolet-harvesting OPVs—has largely no...
Saved in:
Published in: | Advanced energy materials 2019-11, Vol.9 (48) |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 48 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 9 |
creator | Davy, Nicholas C. Koch, Marius Ngongang Ndjawa, Guy Olivier Lin, Xin Man, Gabriel J. Lin, YunHui L. Sorli, Jeni C. Rand, Barry P. Kahn, Antoine Scholes, Gregory D. Loo, Yueh‐Lin |
description | The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge-transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near-ultraviolet-harvesting OPVs—has largely not been investigated. Here, aggregation-induced room-temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open-circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy-band splitting result in ultrafast CT and charge separation with nonradiative energy losses of |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1595395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1595395</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15953953</originalsourceid><addsrcrecordid>eNqNjMFqAkEQRAeJEIn-Q5P7wG52FT1KUDaXJKB4lWZsZzuM0zLTLnrPh2cTQs4pCqqgHjUwo3JW1nY2r4u7v1493ZtJzh9Fr3pRFlU1Mp8N-9buJCh6gvdWVDxFSqgsEVZXFy6ZOwo36Bhh6X0i_7PZl3i4ODrANvE5kMJGUSkDR0BoCLubXaqc7DoRwavEc8CICd6Sx8gONnRiJ98XKmlshkcMmSa_-WAe16vtc2MlK--zYyXX9nQkp_tyuphWvf8FfQH8gVRj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Davy, Nicholas C. ; Koch, Marius ; Ngongang Ndjawa, Guy Olivier ; Lin, Xin ; Man, Gabriel J. ; Lin, YunHui L. ; Sorli, Jeni C. ; Rand, Barry P. ; Kahn, Antoine ; Scholes, Gregory D. ; Loo, Yueh‐Lin</creator><creatorcontrib>Davy, Nicholas C. ; Koch, Marius ; Ngongang Ndjawa, Guy Olivier ; Lin, Xin ; Man, Gabriel J. ; Lin, YunHui L. ; Sorli, Jeni C. ; Rand, Barry P. ; Kahn, Antoine ; Scholes, Gregory D. ; Loo, Yueh‐Lin ; Princeton Univ., NJ (United States)</creatorcontrib><description>The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge-transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near-ultraviolet-harvesting OPVs—has largely not been investigated. Here, aggregation-induced room-temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open-circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy-band splitting result in ultrafast CT and charge separation with nonradiative energy losses of <250 meV, suggesting that a 0.1 eV driving force is sufficient for charge separation, with entropic gain via CT state delocalization being the main driver for exciton dissociation and generation of free charges. This finding can inform engineering of next-generation active materials and films for near-ultraviolet OPVs with open-circuit voltages exceeding 2 V. Contrary to general belief, this work reveals that exclusive and efficient ISC need not require heavy-atom-containing active materials. Molecular aggregation through thin-film processing provides an alternative route to accessing 100% triplet states on photoexcitation.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>electro-optical materials ; ENERGY STORAGE ; intersystem crossing ; luminescence ; Organic electronics ; photovoltaic devices ; solar cells ; triplet excitons</subject><ispartof>Advanced energy materials, 2019-11, Vol.9 (48)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000242840847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1595395$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Davy, Nicholas C.</creatorcontrib><creatorcontrib>Koch, Marius</creatorcontrib><creatorcontrib>Ngongang Ndjawa, Guy Olivier</creatorcontrib><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Man, Gabriel J.</creatorcontrib><creatorcontrib>Lin, YunHui L.</creatorcontrib><creatorcontrib>Sorli, Jeni C.</creatorcontrib><creatorcontrib>Rand, Barry P.</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Loo, Yueh‐Lin</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><title>High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor</title><title>Advanced energy materials</title><description>The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge-transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near-ultraviolet-harvesting OPVs—has largely not been investigated. Here, aggregation-induced room-temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open-circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy-band splitting result in ultrafast CT and charge separation with nonradiative energy losses of <250 meV, suggesting that a 0.1 eV driving force is sufficient for charge separation, with entropic gain via CT state delocalization being the main driver for exciton dissociation and generation of free charges. This finding can inform engineering of next-generation active materials and films for near-ultraviolet OPVs with open-circuit voltages exceeding 2 V. Contrary to general belief, this work reveals that exclusive and efficient ISC need not require heavy-atom-containing active materials. Molecular aggregation through thin-film processing provides an alternative route to accessing 100% triplet states on photoexcitation.</description><subject>electro-optical materials</subject><subject>ENERGY STORAGE</subject><subject>intersystem crossing</subject><subject>luminescence</subject><subject>Organic electronics</subject><subject>photovoltaic devices</subject><subject>solar cells</subject><subject>triplet excitons</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNjMFqAkEQRAeJEIn-Q5P7wG52FT1KUDaXJKB4lWZsZzuM0zLTLnrPh2cTQs4pCqqgHjUwo3JW1nY2r4u7v1493ZtJzh9Fr3pRFlU1Mp8N-9buJCh6gvdWVDxFSqgsEVZXFy6ZOwo36Bhh6X0i_7PZl3i4ODrANvE5kMJGUSkDR0BoCLubXaqc7DoRwavEc8CICd6Sx8gONnRiJ98XKmlshkcMmSa_-WAe16vtc2MlK--zYyXX9nQkp_tyuphWvf8FfQH8gVRj</recordid><startdate>20191119</startdate><enddate>20191119</enddate><creator>Davy, Nicholas C.</creator><creator>Koch, Marius</creator><creator>Ngongang Ndjawa, Guy Olivier</creator><creator>Lin, Xin</creator><creator>Man, Gabriel J.</creator><creator>Lin, YunHui L.</creator><creator>Sorli, Jeni C.</creator><creator>Rand, Barry P.</creator><creator>Kahn, Antoine</creator><creator>Scholes, Gregory D.</creator><creator>Loo, Yueh‐Lin</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000242840847</orcidid></search><sort><creationdate>20191119</creationdate><title>High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor</title><author>Davy, Nicholas C. ; Koch, Marius ; Ngongang Ndjawa, Guy Olivier ; Lin, Xin ; Man, Gabriel J. ; Lin, YunHui L. ; Sorli, Jeni C. ; Rand, Barry P. ; Kahn, Antoine ; Scholes, Gregory D. ; Loo, Yueh‐Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15953953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>electro-optical materials</topic><topic>ENERGY STORAGE</topic><topic>intersystem crossing</topic><topic>luminescence</topic><topic>Organic electronics</topic><topic>photovoltaic devices</topic><topic>solar cells</topic><topic>triplet excitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davy, Nicholas C.</creatorcontrib><creatorcontrib>Koch, Marius</creatorcontrib><creatorcontrib>Ngongang Ndjawa, Guy Olivier</creatorcontrib><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Man, Gabriel J.</creatorcontrib><creatorcontrib>Lin, YunHui L.</creatorcontrib><creatorcontrib>Sorli, Jeni C.</creatorcontrib><creatorcontrib>Rand, Barry P.</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Loo, Yueh‐Lin</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davy, Nicholas C.</au><au>Koch, Marius</au><au>Ngongang Ndjawa, Guy Olivier</au><au>Lin, Xin</au><au>Man, Gabriel J.</au><au>Lin, YunHui L.</au><au>Sorli, Jeni C.</au><au>Rand, Barry P.</au><au>Kahn, Antoine</au><au>Scholes, Gregory D.</au><au>Loo, Yueh‐Lin</au><aucorp>Princeton Univ., NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor</atitle><jtitle>Advanced energy materials</jtitle><date>2019-11-19</date><risdate>2019</risdate><volume>9</volume><issue>48</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge-transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near-ultraviolet-harvesting OPVs—has largely not been investigated. Here, aggregation-induced room-temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open-circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy-band splitting result in ultrafast CT and charge separation with nonradiative energy losses of <250 meV, suggesting that a 0.1 eV driving force is sufficient for charge separation, with entropic gain via CT state delocalization being the main driver for exciton dissociation and generation of free charges. This finding can inform engineering of next-generation active materials and films for near-ultraviolet OPVs with open-circuit voltages exceeding 2 V. Contrary to general belief, this work reveals that exclusive and efficient ISC need not require heavy-atom-containing active materials. Molecular aggregation through thin-film processing provides an alternative route to accessing 100% triplet states on photoexcitation.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000242840847</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2019-11, Vol.9 (48) |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1595395 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | electro-optical materials ENERGY STORAGE intersystem crossing luminescence Organic electronics photovoltaic devices solar cells triplet excitons |
title | High-Voltage Photogeneration Exclusively via Aggregation-Induced Triplet States in a Heavy-Atom-Free Nonplanar Organic Semiconductor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Voltage%20Photogeneration%20Exclusively%20via%20Aggregation-Induced%20Triplet%20States%20in%20a%20Heavy-Atom-Free%20Nonplanar%20Organic%20Semiconductor&rft.jtitle=Advanced%20energy%20materials&rft.au=Davy,%20Nicholas%20C.&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2019-11-19&rft.volume=9&rft.issue=48&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/&rft_dat=%3Costi%3E1595395%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_15953953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |