Loading…
Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity
Summary Geomaterials such as soils and rocks are inherently anisotropic and sensitive to temperature changes caused by various internal and external processes. They are also susceptible to strain localization in the form of shear bands when subjected to critical loads. We present a thermoplastic fra...
Saved in:
Published in: | International journal for numerical and analytical methods in geomechanics 2016-12, Vol.40 (18), p.2423-2449 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3 |
container_end_page | 2449 |
container_issue | 18 |
container_start_page | 2423 |
container_title | International journal for numerical and analytical methods in geomechanics |
container_volume | 40 |
creator | Semnani, Shabnam J. White, Joshua A. Borja, Ronaldo I. |
description | Summary
Geomaterials such as soils and rocks are inherently anisotropic and sensitive to temperature changes caused by various internal and external processes. They are also susceptible to strain localization in the form of shear bands when subjected to critical loads. We present a thermoplastic framework for modeling coupled thermomechanical response and for predicting the inception of a shear band in a transversely isotropic material using the general framework of critical state plasticity and the specific framework of an anisotropic modified Cam–Clay model. The formulation incorporates anisotropy in both elastic and plastic responses under the assumption of infinitesimal deformation. The model is first calibrated using experimental data from triaxial tests to demonstrate its capability in capturing anisotropy in the mechanical response. Subsequently, stress‐point simulations of strain localization are carried out under two different conditions, namely, isothermal localization and adiabatic localization. The adiabatic formulation investigates the effect of temperature on localization via thermomechanical coupling. Numerical simulations are presented to demonstrate the important role of anisotropy, hardening, and thermal softening on strain localization inception and orientation. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nag.2536 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1596359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4241758821</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3</originalsourceid><addsrcrecordid>eNqN0c9vFCEUB3BiNHGtJv0TiL14mQrDwMCxqXbb2Gwvqz2StwxjaVlYgbWu_vOy2aa_EhNPBN6H983LQ2ifkkNKSPsxwPfDljPxAk0oUaJRkrOXaEKYYI0igr5Gb3K-JoTwWp2gP_Mrm5Zx5SEXZ1zZYAgDziWBC9hHA979huJiwPVeX0P-aVO2foNdjiXFlTN4CcUmBz7jBWQ74IohPJRNcrU1-Nq1QvwQ9Ra9Gusv--7u3ENfTz7Pj0-b84vp2fHReQO867cTCDu2shspEXJcQKcGTlsjh1YNHR0XnHaMQausantFoRcLIoVQQtKeDYYC20Pvd31jDda5RltzZWII1hRNuRKMq4o-7NAqxR9rm4teumys9xBsXGdNpeg4Y5KL_6Cd6CjpCa_04Bm9jusU6rRVMSElJ-RRtkkx52RHvUpuCWmjKdHbreq6Vb3daqXNjt46bzf_dHp2NH3qXS72172HdKNFz3quL2dTPfvC55_It1Yr9hcEObLu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836885009</pqid></control><display><type>article</type><title>Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Semnani, Shabnam J. ; White, Joshua A. ; Borja, Ronaldo I.</creator><creatorcontrib>Semnani, Shabnam J. ; White, Joshua A. ; Borja, Ronaldo I. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Stanford Univ., CA (United States)</creatorcontrib><description>Summary
Geomaterials such as soils and rocks are inherently anisotropic and sensitive to temperature changes caused by various internal and external processes. They are also susceptible to strain localization in the form of shear bands when subjected to critical loads. We present a thermoplastic framework for modeling coupled thermomechanical response and for predicting the inception of a shear band in a transversely isotropic material using the general framework of critical state plasticity and the specific framework of an anisotropic modified Cam–Clay model. The formulation incorporates anisotropy in both elastic and plastic responses under the assumption of infinitesimal deformation. The model is first calibrated using experimental data from triaxial tests to demonstrate its capability in capturing anisotropy in the mechanical response. Subsequently, stress‐point simulations of strain localization are carried out under two different conditions, namely, isothermal localization and adiabatic localization. The adiabatic formulation investigates the effect of temperature on localization via thermomechanical coupling. Numerical simulations are presented to demonstrate the important role of anisotropy, hardening, and thermal softening on strain localization inception and orientation. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.2536</identifier><identifier>CODEN: IJNGDZ</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Adiabatic flow ; Anisotropy ; bifurcatio ; bifurcation ; Computer simulation ; Localization ; MATERIALS SCIENCE ; Mathematical models ; Position (location) ; shear band ; Slip bands ; Strain localization ; thermo-plasticity ; thermoplasticity ; transverse isotropy</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2016-12, Vol.40 (18), p.2423-2449</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3</citedby><cites>FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1596359$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Semnani, Shabnam J.</creatorcontrib><creatorcontrib>White, Joshua A.</creatorcontrib><creatorcontrib>Borja, Ronaldo I.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><title>Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity</title><title>International journal for numerical and analytical methods in geomechanics</title><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><description>Summary
Geomaterials such as soils and rocks are inherently anisotropic and sensitive to temperature changes caused by various internal and external processes. They are also susceptible to strain localization in the form of shear bands when subjected to critical loads. We present a thermoplastic framework for modeling coupled thermomechanical response and for predicting the inception of a shear band in a transversely isotropic material using the general framework of critical state plasticity and the specific framework of an anisotropic modified Cam–Clay model. The formulation incorporates anisotropy in both elastic and plastic responses under the assumption of infinitesimal deformation. The model is first calibrated using experimental data from triaxial tests to demonstrate its capability in capturing anisotropy in the mechanical response. Subsequently, stress‐point simulations of strain localization are carried out under two different conditions, namely, isothermal localization and adiabatic localization. The adiabatic formulation investigates the effect of temperature on localization via thermomechanical coupling. Numerical simulations are presented to demonstrate the important role of anisotropy, hardening, and thermal softening on strain localization inception and orientation. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>Adiabatic flow</subject><subject>Anisotropy</subject><subject>bifurcatio</subject><subject>bifurcation</subject><subject>Computer simulation</subject><subject>Localization</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>Position (location)</subject><subject>shear band</subject><subject>Slip bands</subject><subject>Strain localization</subject><subject>thermo-plasticity</subject><subject>thermoplasticity</subject><subject>transverse isotropy</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c9vFCEUB3BiNHGtJv0TiL14mQrDwMCxqXbb2Gwvqz2StwxjaVlYgbWu_vOy2aa_EhNPBN6H983LQ2ifkkNKSPsxwPfDljPxAk0oUaJRkrOXaEKYYI0igr5Gb3K-JoTwWp2gP_Mrm5Zx5SEXZ1zZYAgDziWBC9hHA979huJiwPVeX0P-aVO2foNdjiXFlTN4CcUmBz7jBWQ74IohPJRNcrU1-Nq1QvwQ9Ra9Gusv--7u3ENfTz7Pj0-b84vp2fHReQO867cTCDu2shspEXJcQKcGTlsjh1YNHR0XnHaMQausantFoRcLIoVQQtKeDYYC20Pvd31jDda5RltzZWII1hRNuRKMq4o-7NAqxR9rm4teumys9xBsXGdNpeg4Y5KL_6Cd6CjpCa_04Bm9jusU6rRVMSElJ-RRtkkx52RHvUpuCWmjKdHbreq6Vb3daqXNjt46bzf_dHp2NH3qXS72172HdKNFz3quL2dTPfvC55_It1Yr9hcEObLu</recordid><startdate>20161225</startdate><enddate>20161225</enddate><creator>Semnani, Shabnam J.</creator><creator>White, Joshua A.</creator><creator>Borja, Ronaldo I.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161225</creationdate><title>Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity</title><author>Semnani, Shabnam J. ; White, Joshua A. ; Borja, Ronaldo I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adiabatic flow</topic><topic>Anisotropy</topic><topic>bifurcatio</topic><topic>bifurcation</topic><topic>Computer simulation</topic><topic>Localization</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>Position (location)</topic><topic>shear band</topic><topic>Slip bands</topic><topic>Strain localization</topic><topic>thermo-plasticity</topic><topic>thermoplasticity</topic><topic>transverse isotropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semnani, Shabnam J.</creatorcontrib><creatorcontrib>White, Joshua A.</creatorcontrib><creatorcontrib>Borja, Ronaldo I.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semnani, Shabnam J.</au><au>White, Joshua A.</au><au>Borja, Ronaldo I.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Stanford Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><date>2016-12-25</date><risdate>2016</risdate><volume>40</volume><issue>18</issue><spage>2423</spage><epage>2449</epage><pages>2423-2449</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><coden>IJNGDZ</coden><abstract>Summary
Geomaterials such as soils and rocks are inherently anisotropic and sensitive to temperature changes caused by various internal and external processes. They are also susceptible to strain localization in the form of shear bands when subjected to critical loads. We present a thermoplastic framework for modeling coupled thermomechanical response and for predicting the inception of a shear band in a transversely isotropic material using the general framework of critical state plasticity and the specific framework of an anisotropic modified Cam–Clay model. The formulation incorporates anisotropy in both elastic and plastic responses under the assumption of infinitesimal deformation. The model is first calibrated using experimental data from triaxial tests to demonstrate its capability in capturing anisotropy in the mechanical response. Subsequently, stress‐point simulations of strain localization are carried out under two different conditions, namely, isothermal localization and adiabatic localization. The adiabatic formulation investigates the effect of temperature on localization via thermomechanical coupling. Numerical simulations are presented to demonstrate the important role of anisotropy, hardening, and thermal softening on strain localization inception and orientation. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nag.2536</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9061 |
ispartof | International journal for numerical and analytical methods in geomechanics, 2016-12, Vol.40 (18), p.2423-2449 |
issn | 0363-9061 1096-9853 |
language | eng |
recordid | cdi_osti_scitechconnect_1596359 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adiabatic flow Anisotropy bifurcatio bifurcation Computer simulation Localization MATERIALS SCIENCE Mathematical models Position (location) shear band Slip bands Strain localization thermo-plasticity thermoplasticity transverse isotropy |
title | Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoplasticity%20and%20strain%20localization%20in%20transversely%20isotropic%20materials%20based%20on%20anisotropic%20critical%20state%20plasticity&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Semnani,%20Shabnam%20J.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2016-12-25&rft.volume=40&rft.issue=18&rft.spage=2423&rft.epage=2449&rft.pages=2423-2449&rft.issn=0363-9061&rft.eissn=1096-9853&rft.coden=IJNGDZ&rft_id=info:doi/10.1002/nag.2536&rft_dat=%3Cproquest_osti_%3E4241758821%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1836885009&rft_id=info:pmid/&rfr_iscdi=true |