Loading…

Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity

Summary Geomaterials such as soils and rocks are inherently anisotropic and sensitive to temperature changes caused by various internal and external processes. They are also susceptible to strain localization in the form of shear bands when subjected to critical loads. We present a thermoplastic fra...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical and analytical methods in geomechanics 2016-12, Vol.40 (18), p.2423-2449
Main Authors: Semnani, Shabnam J., White, Joshua A., Borja, Ronaldo I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3
cites cdi_FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3
container_end_page 2449
container_issue 18
container_start_page 2423
container_title International journal for numerical and analytical methods in geomechanics
container_volume 40
creator Semnani, Shabnam J.
White, Joshua A.
Borja, Ronaldo I.
description Summary Geomaterials such as soils and rocks are inherently anisotropic and sensitive to temperature changes caused by various internal and external processes. They are also susceptible to strain localization in the form of shear bands when subjected to critical loads. We present a thermoplastic framework for modeling coupled thermomechanical response and for predicting the inception of a shear band in a transversely isotropic material using the general framework of critical state plasticity and the specific framework of an anisotropic modified Cam–Clay model. The formulation incorporates anisotropy in both elastic and plastic responses under the assumption of infinitesimal deformation. The model is first calibrated using experimental data from triaxial tests to demonstrate its capability in capturing anisotropy in the mechanical response. Subsequently, stress‐point simulations of strain localization are carried out under two different conditions, namely, isothermal localization and adiabatic localization. The adiabatic formulation investigates the effect of temperature on localization via thermomechanical coupling. Numerical simulations are presented to demonstrate the important role of anisotropy, hardening, and thermal softening on strain localization inception and orientation. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nag.2536
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1596359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4241758821</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3</originalsourceid><addsrcrecordid>eNqN0c9vFCEUB3BiNHGtJv0TiL14mQrDwMCxqXbb2Gwvqz2StwxjaVlYgbWu_vOy2aa_EhNPBN6H983LQ2ifkkNKSPsxwPfDljPxAk0oUaJRkrOXaEKYYI0igr5Gb3K-JoTwWp2gP_Mrm5Zx5SEXZ1zZYAgDziWBC9hHA979huJiwPVeX0P-aVO2foNdjiXFlTN4CcUmBz7jBWQ74IohPJRNcrU1-Nq1QvwQ9Ra9Gusv--7u3ENfTz7Pj0-b84vp2fHReQO867cTCDu2shspEXJcQKcGTlsjh1YNHR0XnHaMQausantFoRcLIoVQQtKeDYYC20Pvd31jDda5RltzZWII1hRNuRKMq4o-7NAqxR9rm4teumys9xBsXGdNpeg4Y5KL_6Cd6CjpCa_04Bm9jusU6rRVMSElJ-RRtkkx52RHvUpuCWmjKdHbreq6Vb3daqXNjt46bzf_dHp2NH3qXS72172HdKNFz3quL2dTPfvC55_It1Yr9hcEObLu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836885009</pqid></control><display><type>article</type><title>Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Semnani, Shabnam J. ; White, Joshua A. ; Borja, Ronaldo I.</creator><creatorcontrib>Semnani, Shabnam J. ; White, Joshua A. ; Borja, Ronaldo I. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Stanford Univ., CA (United States)</creatorcontrib><description>Summary Geomaterials such as soils and rocks are inherently anisotropic and sensitive to temperature changes caused by various internal and external processes. They are also susceptible to strain localization in the form of shear bands when subjected to critical loads. We present a thermoplastic framework for modeling coupled thermomechanical response and for predicting the inception of a shear band in a transversely isotropic material using the general framework of critical state plasticity and the specific framework of an anisotropic modified Cam–Clay model. The formulation incorporates anisotropy in both elastic and plastic responses under the assumption of infinitesimal deformation. The model is first calibrated using experimental data from triaxial tests to demonstrate its capability in capturing anisotropy in the mechanical response. Subsequently, stress‐point simulations of strain localization are carried out under two different conditions, namely, isothermal localization and adiabatic localization. The adiabatic formulation investigates the effect of temperature on localization via thermomechanical coupling. Numerical simulations are presented to demonstrate the important role of anisotropy, hardening, and thermal softening on strain localization inception and orientation. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.2536</identifier><identifier>CODEN: IJNGDZ</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Adiabatic flow ; Anisotropy ; bifurcatio ; bifurcation ; Computer simulation ; Localization ; MATERIALS SCIENCE ; Mathematical models ; Position (location) ; shear band ; Slip bands ; Strain localization ; thermo-plasticity ; thermoplasticity ; transverse isotropy</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2016-12, Vol.40 (18), p.2423-2449</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3</citedby><cites>FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1596359$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Semnani, Shabnam J.</creatorcontrib><creatorcontrib>White, Joshua A.</creatorcontrib><creatorcontrib>Borja, Ronaldo I.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><title>Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity</title><title>International journal for numerical and analytical methods in geomechanics</title><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><description>Summary Geomaterials such as soils and rocks are inherently anisotropic and sensitive to temperature changes caused by various internal and external processes. They are also susceptible to strain localization in the form of shear bands when subjected to critical loads. We present a thermoplastic framework for modeling coupled thermomechanical response and for predicting the inception of a shear band in a transversely isotropic material using the general framework of critical state plasticity and the specific framework of an anisotropic modified Cam–Clay model. The formulation incorporates anisotropy in both elastic and plastic responses under the assumption of infinitesimal deformation. The model is first calibrated using experimental data from triaxial tests to demonstrate its capability in capturing anisotropy in the mechanical response. Subsequently, stress‐point simulations of strain localization are carried out under two different conditions, namely, isothermal localization and adiabatic localization. The adiabatic formulation investigates the effect of temperature on localization via thermomechanical coupling. Numerical simulations are presented to demonstrate the important role of anisotropy, hardening, and thermal softening on strain localization inception and orientation. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Adiabatic flow</subject><subject>Anisotropy</subject><subject>bifurcatio</subject><subject>bifurcation</subject><subject>Computer simulation</subject><subject>Localization</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>Position (location)</subject><subject>shear band</subject><subject>Slip bands</subject><subject>Strain localization</subject><subject>thermo-plasticity</subject><subject>thermoplasticity</subject><subject>transverse isotropy</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c9vFCEUB3BiNHGtJv0TiL14mQrDwMCxqXbb2Gwvqz2StwxjaVlYgbWu_vOy2aa_EhNPBN6H983LQ2ifkkNKSPsxwPfDljPxAk0oUaJRkrOXaEKYYI0igr5Gb3K-JoTwWp2gP_Mrm5Zx5SEXZ1zZYAgDziWBC9hHA979huJiwPVeX0P-aVO2foNdjiXFlTN4CcUmBz7jBWQ74IohPJRNcrU1-Nq1QvwQ9Ra9Gusv--7u3ENfTz7Pj0-b84vp2fHReQO867cTCDu2shspEXJcQKcGTlsjh1YNHR0XnHaMQausantFoRcLIoVQQtKeDYYC20Pvd31jDda5RltzZWII1hRNuRKMq4o-7NAqxR9rm4teumys9xBsXGdNpeg4Y5KL_6Cd6CjpCa_04Bm9jusU6rRVMSElJ-RRtkkx52RHvUpuCWmjKdHbreq6Vb3daqXNjt46bzf_dHp2NH3qXS72172HdKNFz3quL2dTPfvC55_It1Yr9hcEObLu</recordid><startdate>20161225</startdate><enddate>20161225</enddate><creator>Semnani, Shabnam J.</creator><creator>White, Joshua A.</creator><creator>Borja, Ronaldo I.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161225</creationdate><title>Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity</title><author>Semnani, Shabnam J. ; White, Joshua A. ; Borja, Ronaldo I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adiabatic flow</topic><topic>Anisotropy</topic><topic>bifurcatio</topic><topic>bifurcation</topic><topic>Computer simulation</topic><topic>Localization</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>Position (location)</topic><topic>shear band</topic><topic>Slip bands</topic><topic>Strain localization</topic><topic>thermo-plasticity</topic><topic>thermoplasticity</topic><topic>transverse isotropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semnani, Shabnam J.</creatorcontrib><creatorcontrib>White, Joshua A.</creatorcontrib><creatorcontrib>Borja, Ronaldo I.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semnani, Shabnam J.</au><au>White, Joshua A.</au><au>Borja, Ronaldo I.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Stanford Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><date>2016-12-25</date><risdate>2016</risdate><volume>40</volume><issue>18</issue><spage>2423</spage><epage>2449</epage><pages>2423-2449</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><coden>IJNGDZ</coden><abstract>Summary Geomaterials such as soils and rocks are inherently anisotropic and sensitive to temperature changes caused by various internal and external processes. They are also susceptible to strain localization in the form of shear bands when subjected to critical loads. We present a thermoplastic framework for modeling coupled thermomechanical response and for predicting the inception of a shear band in a transversely isotropic material using the general framework of critical state plasticity and the specific framework of an anisotropic modified Cam–Clay model. The formulation incorporates anisotropy in both elastic and plastic responses under the assumption of infinitesimal deformation. The model is first calibrated using experimental data from triaxial tests to demonstrate its capability in capturing anisotropy in the mechanical response. Subsequently, stress‐point simulations of strain localization are carried out under two different conditions, namely, isothermal localization and adiabatic localization. The adiabatic formulation investigates the effect of temperature on localization via thermomechanical coupling. Numerical simulations are presented to demonstrate the important role of anisotropy, hardening, and thermal softening on strain localization inception and orientation. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nag.2536</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2016-12, Vol.40 (18), p.2423-2449
issn 0363-9061
1096-9853
language eng
recordid cdi_osti_scitechconnect_1596359
source Wiley-Blackwell Read & Publish Collection
subjects Adiabatic flow
Anisotropy
bifurcatio
bifurcation
Computer simulation
Localization
MATERIALS SCIENCE
Mathematical models
Position (location)
shear band
Slip bands
Strain localization
thermo-plasticity
thermoplasticity
transverse isotropy
title Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoplasticity%20and%20strain%20localization%20in%20transversely%20isotropic%20materials%20based%20on%20anisotropic%20critical%20state%20plasticity&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Semnani,%20Shabnam%20J.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2016-12-25&rft.volume=40&rft.issue=18&rft.spage=2423&rft.epage=2449&rft.pages=2423-2449&rft.issn=0363-9061&rft.eissn=1096-9853&rft.coden=IJNGDZ&rft_id=info:doi/10.1002/nag.2536&rft_dat=%3Cproquest_osti_%3E4241758821%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5476-986ef284f1068fba49d512c8d29d41fb51433a29e92791a76b0866968173dc1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1836885009&rft_id=info:pmid/&rfr_iscdi=true