Loading…
Mesh independence of the generalized Davidson algorithm
We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent. In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a sequence of discretizations of a problem in a Banach space conve...
Saved in:
Published in: | Journal of computational physics 2020-05, Vol.409 (C), p.109322, Article 109322 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353 |
container_end_page | |
container_issue | C |
container_start_page | 109322 |
container_title | Journal of computational physics |
container_volume | 409 |
creator | Kelley, C.T. Bernholc, J. Briggs, E.L. Hamilton, Steven Lin, Lin Yang, Chao |
description | We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent. In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a sequence of discretizations of a problem in a Banach space converge the statistics for the infinite-dimensional problem. We illustrate the result with several numerical examples. |
doi_str_mv | 10.1016/j.jcp.2020.109322 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1601524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999120300966</els_id><sourcerecordid>2441885708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxHX1B3hr9Nx1gH5APJn1M1njRc-E0umWZrdU6Jror5emnr0MQ3jf4Z2HkEsKKwq0uOlWnRlWDNh0l5yxI7KIDaSspMUxWQAwmkop6Sk5C6EDAJFnYkHKVwxtYvsaB4ylN5i4JhlbTLbYo9c7-4N1cq-_bB1cn-jd1nk7tvtzctLoXcCLv3NJPh4f3tfP6ebt6WV9t0kNl_mYChn_FbE1silrXhgKhjW5obysisoYDSVgLHV8FVLTCjkgzSrN4wqa53xJrua5LoxWBWNHNK1xfY9mVLQAmrMsiq5n0eDd5wHDqDp38H3MpViWUSHyEkRU0VllvAvBY6MGb_fafysKaoKoOhUhqgmimiFGz-3swbjjl0U_RZgo1dZPCWpn_3H_ApKYd8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441885708</pqid></control><display><type>article</type><title>Mesh independence of the generalized Davidson algorithm</title><source>ScienceDirect Freedom Collection</source><creator>Kelley, C.T. ; Bernholc, J. ; Briggs, E.L. ; Hamilton, Steven ; Lin, Lin ; Yang, Chao</creator><creatorcontrib>Kelley, C.T. ; Bernholc, J. ; Briggs, E.L. ; Hamilton, Steven ; Lin, Lin ; Yang, Chao</creatorcontrib><description>We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent. In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a sequence of discretizations of a problem in a Banach space converge the statistics for the infinite-dimensional problem. We illustrate the result with several numerical examples.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2020.109322</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; Banach spaces ; Computational physics ; Convergence ; Eigenvalues ; Electronic structure computations ; Generalized Davidson algorithm ; Iterative methods ; Mesh independence ; Neutron transport ; Norms</subject><ispartof>Journal of computational physics, 2020-05, Vol.409 (C), p.109322, Article 109322</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. May 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353</citedby><cites>FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353</cites><orcidid>0000-0003-2791-0648 ; 0000-0003-3542-114X ; 0000000327910648 ; 000000033542114X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1601524$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelley, C.T.</creatorcontrib><creatorcontrib>Bernholc, J.</creatorcontrib><creatorcontrib>Briggs, E.L.</creatorcontrib><creatorcontrib>Hamilton, Steven</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><title>Mesh independence of the generalized Davidson algorithm</title><title>Journal of computational physics</title><description>We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent. In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a sequence of discretizations of a problem in a Banach space converge the statistics for the infinite-dimensional problem. We illustrate the result with several numerical examples.</description><subject>Algorithms</subject><subject>Banach spaces</subject><subject>Computational physics</subject><subject>Convergence</subject><subject>Eigenvalues</subject><subject>Electronic structure computations</subject><subject>Generalized Davidson algorithm</subject><subject>Iterative methods</subject><subject>Mesh independence</subject><subject>Neutron transport</subject><subject>Norms</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxHX1B3hr9Nx1gH5APJn1M1njRc-E0umWZrdU6Jror5emnr0MQ3jf4Z2HkEsKKwq0uOlWnRlWDNh0l5yxI7KIDaSspMUxWQAwmkop6Sk5C6EDAJFnYkHKVwxtYvsaB4ylN5i4JhlbTLbYo9c7-4N1cq-_bB1cn-jd1nk7tvtzctLoXcCLv3NJPh4f3tfP6ebt6WV9t0kNl_mYChn_FbE1silrXhgKhjW5obysisoYDSVgLHV8FVLTCjkgzSrN4wqa53xJrua5LoxWBWNHNK1xfY9mVLQAmrMsiq5n0eDd5wHDqDp38H3MpViWUSHyEkRU0VllvAvBY6MGb_fafysKaoKoOhUhqgmimiFGz-3swbjjl0U_RZgo1dZPCWpn_3H_ApKYd8w</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Kelley, C.T.</creator><creator>Bernholc, J.</creator><creator>Briggs, E.L.</creator><creator>Hamilton, Steven</creator><creator>Lin, Lin</creator><creator>Yang, Chao</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2791-0648</orcidid><orcidid>https://orcid.org/0000-0003-3542-114X</orcidid><orcidid>https://orcid.org/0000000327910648</orcidid><orcidid>https://orcid.org/000000033542114X</orcidid></search><sort><creationdate>20200515</creationdate><title>Mesh independence of the generalized Davidson algorithm</title><author>Kelley, C.T. ; Bernholc, J. ; Briggs, E.L. ; Hamilton, Steven ; Lin, Lin ; Yang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Banach spaces</topic><topic>Computational physics</topic><topic>Convergence</topic><topic>Eigenvalues</topic><topic>Electronic structure computations</topic><topic>Generalized Davidson algorithm</topic><topic>Iterative methods</topic><topic>Mesh independence</topic><topic>Neutron transport</topic><topic>Norms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelley, C.T.</creatorcontrib><creatorcontrib>Bernholc, J.</creatorcontrib><creatorcontrib>Briggs, E.L.</creatorcontrib><creatorcontrib>Hamilton, Steven</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelley, C.T.</au><au>Bernholc, J.</au><au>Briggs, E.L.</au><au>Hamilton, Steven</au><au>Lin, Lin</au><au>Yang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesh independence of the generalized Davidson algorithm</atitle><jtitle>Journal of computational physics</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>409</volume><issue>C</issue><spage>109322</spage><pages>109322-</pages><artnum>109322</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent. In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a sequence of discretizations of a problem in a Banach space converge the statistics for the infinite-dimensional problem. We illustrate the result with several numerical examples.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2020.109322</doi><orcidid>https://orcid.org/0000-0003-2791-0648</orcidid><orcidid>https://orcid.org/0000-0003-3542-114X</orcidid><orcidid>https://orcid.org/0000000327910648</orcidid><orcidid>https://orcid.org/000000033542114X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2020-05, Vol.409 (C), p.109322, Article 109322 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_1601524 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Banach spaces Computational physics Convergence Eigenvalues Electronic structure computations Generalized Davidson algorithm Iterative methods Mesh independence Neutron transport Norms |
title | Mesh independence of the generalized Davidson algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesh%20independence%20of%20the%20generalized%20Davidson%20algorithm&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Kelley,%20C.T.&rft.date=2020-05-15&rft.volume=409&rft.issue=C&rft.spage=109322&rft.pages=109322-&rft.artnum=109322&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2020.109322&rft_dat=%3Cproquest_osti_%3E2441885708%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441885708&rft_id=info:pmid/&rfr_iscdi=true |