Loading…

Mesh independence of the generalized Davidson algorithm

We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent. In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a sequence of discretizations of a problem in a Banach space conve...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2020-05, Vol.409 (C), p.109322, Article 109322
Main Authors: Kelley, C.T., Bernholc, J., Briggs, E.L., Hamilton, Steven, Lin, Lin, Yang, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353
cites cdi_FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353
container_end_page
container_issue C
container_start_page 109322
container_title Journal of computational physics
container_volume 409
creator Kelley, C.T.
Bernholc, J.
Briggs, E.L.
Hamilton, Steven
Lin, Lin
Yang, Chao
description We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent. In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a sequence of discretizations of a problem in a Banach space converge the statistics for the infinite-dimensional problem. We illustrate the result with several numerical examples.
doi_str_mv 10.1016/j.jcp.2020.109322
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1601524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999120300966</els_id><sourcerecordid>2441885708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxHX1B3hr9Nx1gH5APJn1M1njRc-E0umWZrdU6Jror5emnr0MQ3jf4Z2HkEsKKwq0uOlWnRlWDNh0l5yxI7KIDaSspMUxWQAwmkop6Sk5C6EDAJFnYkHKVwxtYvsaB4ylN5i4JhlbTLbYo9c7-4N1cq-_bB1cn-jd1nk7tvtzctLoXcCLv3NJPh4f3tfP6ebt6WV9t0kNl_mYChn_FbE1silrXhgKhjW5obysisoYDSVgLHV8FVLTCjkgzSrN4wqa53xJrua5LoxWBWNHNK1xfY9mVLQAmrMsiq5n0eDd5wHDqDp38H3MpViWUSHyEkRU0VllvAvBY6MGb_fafysKaoKoOhUhqgmimiFGz-3swbjjl0U_RZgo1dZPCWpn_3H_ApKYd8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441885708</pqid></control><display><type>article</type><title>Mesh independence of the generalized Davidson algorithm</title><source>ScienceDirect Freedom Collection</source><creator>Kelley, C.T. ; Bernholc, J. ; Briggs, E.L. ; Hamilton, Steven ; Lin, Lin ; Yang, Chao</creator><creatorcontrib>Kelley, C.T. ; Bernholc, J. ; Briggs, E.L. ; Hamilton, Steven ; Lin, Lin ; Yang, Chao</creatorcontrib><description>We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent. In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a sequence of discretizations of a problem in a Banach space converge the statistics for the infinite-dimensional problem. We illustrate the result with several numerical examples.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2020.109322</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; Banach spaces ; Computational physics ; Convergence ; Eigenvalues ; Electronic structure computations ; Generalized Davidson algorithm ; Iterative methods ; Mesh independence ; Neutron transport ; Norms</subject><ispartof>Journal of computational physics, 2020-05, Vol.409 (C), p.109322, Article 109322</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. May 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353</citedby><cites>FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353</cites><orcidid>0000-0003-2791-0648 ; 0000-0003-3542-114X ; 0000000327910648 ; 000000033542114X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1601524$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelley, C.T.</creatorcontrib><creatorcontrib>Bernholc, J.</creatorcontrib><creatorcontrib>Briggs, E.L.</creatorcontrib><creatorcontrib>Hamilton, Steven</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><title>Mesh independence of the generalized Davidson algorithm</title><title>Journal of computational physics</title><description>We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent. In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a sequence of discretizations of a problem in a Banach space converge the statistics for the infinite-dimensional problem. We illustrate the result with several numerical examples.</description><subject>Algorithms</subject><subject>Banach spaces</subject><subject>Computational physics</subject><subject>Convergence</subject><subject>Eigenvalues</subject><subject>Electronic structure computations</subject><subject>Generalized Davidson algorithm</subject><subject>Iterative methods</subject><subject>Mesh independence</subject><subject>Neutron transport</subject><subject>Norms</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxHX1B3hr9Nx1gH5APJn1M1njRc-E0umWZrdU6Jror5emnr0MQ3jf4Z2HkEsKKwq0uOlWnRlWDNh0l5yxI7KIDaSspMUxWQAwmkop6Sk5C6EDAJFnYkHKVwxtYvsaB4ylN5i4JhlbTLbYo9c7-4N1cq-_bB1cn-jd1nk7tvtzctLoXcCLv3NJPh4f3tfP6ebt6WV9t0kNl_mYChn_FbE1silrXhgKhjW5obysisoYDSVgLHV8FVLTCjkgzSrN4wqa53xJrua5LoxWBWNHNK1xfY9mVLQAmrMsiq5n0eDd5wHDqDp38H3MpViWUSHyEkRU0VllvAvBY6MGb_fafysKaoKoOhUhqgmimiFGz-3swbjjl0U_RZgo1dZPCWpn_3H_ApKYd8w</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Kelley, C.T.</creator><creator>Bernholc, J.</creator><creator>Briggs, E.L.</creator><creator>Hamilton, Steven</creator><creator>Lin, Lin</creator><creator>Yang, Chao</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2791-0648</orcidid><orcidid>https://orcid.org/0000-0003-3542-114X</orcidid><orcidid>https://orcid.org/0000000327910648</orcidid><orcidid>https://orcid.org/000000033542114X</orcidid></search><sort><creationdate>20200515</creationdate><title>Mesh independence of the generalized Davidson algorithm</title><author>Kelley, C.T. ; Bernholc, J. ; Briggs, E.L. ; Hamilton, Steven ; Lin, Lin ; Yang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Banach spaces</topic><topic>Computational physics</topic><topic>Convergence</topic><topic>Eigenvalues</topic><topic>Electronic structure computations</topic><topic>Generalized Davidson algorithm</topic><topic>Iterative methods</topic><topic>Mesh independence</topic><topic>Neutron transport</topic><topic>Norms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelley, C.T.</creatorcontrib><creatorcontrib>Bernholc, J.</creatorcontrib><creatorcontrib>Briggs, E.L.</creatorcontrib><creatorcontrib>Hamilton, Steven</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelley, C.T.</au><au>Bernholc, J.</au><au>Briggs, E.L.</au><au>Hamilton, Steven</au><au>Lin, Lin</au><au>Yang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesh independence of the generalized Davidson algorithm</atitle><jtitle>Journal of computational physics</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>409</volume><issue>C</issue><spage>109322</spage><pages>109322-</pages><artnum>109322</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent. In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a sequence of discretizations of a problem in a Banach space converge the statistics for the infinite-dimensional problem. We illustrate the result with several numerical examples.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2020.109322</doi><orcidid>https://orcid.org/0000-0003-2791-0648</orcidid><orcidid>https://orcid.org/0000-0003-3542-114X</orcidid><orcidid>https://orcid.org/0000000327910648</orcidid><orcidid>https://orcid.org/000000033542114X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2020-05, Vol.409 (C), p.109322, Article 109322
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1601524
source ScienceDirect Freedom Collection
subjects Algorithms
Banach spaces
Computational physics
Convergence
Eigenvalues
Electronic structure computations
Generalized Davidson algorithm
Iterative methods
Mesh independence
Neutron transport
Norms
title Mesh independence of the generalized Davidson algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesh%20independence%20of%20the%20generalized%20Davidson%20algorithm&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Kelley,%20C.T.&rft.date=2020-05-15&rft.volume=409&rft.issue=C&rft.spage=109322&rft.pages=109322-&rft.artnum=109322&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2020.109322&rft_dat=%3Cproquest_osti_%3E2441885708%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-890218395c9f7d36c10c2f5c137b6bcca070ea07df7d89a1be30e14ba3322a353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441885708&rft_id=info:pmid/&rfr_iscdi=true