Loading…

Structural and ligand binding analyses of the periplasmic sensor domain of RsbU in Chlamydia trachomatis support a role in TCA cycle regulation

Summary Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2020-01, Vol.113 (1), p.68-88
Main Authors: Soules, Katelyn R., Dmitriev, Aidan, LaBrie, Scott D., Dimond, Zoë E., May, Benjamin H., Johnson, David K., Zhang, Yang, Battaile, Kevin P., Lovell, Scott, Hefty, P. Scott
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4151-9cdac6ca85e41ecff9122fd2f1bc819ca46b0112fcd770484b710a160fa637313
cites cdi_FETCH-LOGICAL-c4151-9cdac6ca85e41ecff9122fd2f1bc819ca46b0112fcd770484b710a160fa637313
container_end_page 88
container_issue 1
container_start_page 68
container_title Molecular microbiology
container_volume 113
creator Soules, Katelyn R.
Dmitriev, Aidan
LaBrie, Scott D.
Dimond, Zoë E.
May, Benjamin H.
Johnson, David K.
Zhang, Yang
Battaile, Kevin P.
Lovell, Scott
Hefty, P. Scott
description Summary Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia encodes homologs to proteins in the Rsb phosphoregulatory partner‐switching pathway, best described in Bacillus subtilis. ORF CT588 has a strong sequence similarity to RsbU cytoplasmic phosphatase domain but also contains a unique periplasmic sensor domain that is expected to control the phosphatase activity. A 1.7 Å crystal structure of the periplasmic domain of the RsbU protein from C. trachomatis (PDB 6MAB) displays close structural similarity to DctB from Vibrio and Sinorhizobium. DctB has been shown, both structurally and functionally, to specifically bind to the tricarboxylic acid (TCA) cycle intermediate succinate. Surface plasmon resonance and differential scanning fluorimetry of TCA intermediates and potential metabolites from a virtual screen of RsbU revealed that alpha‐ketoglutarate, malate and oxaloacetate bound to the RsbU periplasmic domain. Substitutions in the putative binding site resulted in reduced binding capabilities. An RsbU null mutant showed severe growth defects which could be restored through genetic complementation. Chemical inhibition of ATP synthesis by oxidative phosphorylation phenocopied the growth defect observed in the RsbU null strain. Altogether, these data support a model with the Rsb system responding differentially to TCA cycle intermediates to regulate metabolism and key differentiation processes. Structure and functional analyses of the periplasmic sensor domain of RsbU (CT588) from Chlamydia trachomatis support binding to three TCA intermediates; malate, alpha‐ketoglutarate and oxaloacetate. Genetic null mutants of rsbU display a strong dependence on this gene product for the growth and progeny production. These observations, combined with prior studies associated with terminal RsbW partners, indicate the regulation of the metabolic activity by the Rsb system in response to these intermediate TCA cycle components.
doi_str_mv 10.1111/mmi.14401
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1601891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2351349052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4151-9cdac6ca85e41ecff9122fd2f1bc819ca46b0112fcd770484b710a160fa637313</originalsourceid><addsrcrecordid>eNp10UtrFTEYBuAgij2tLvwDEnRTF9Pmm8x1WQ5eCi2CtuAuZL5JzknJTMYkg8yv8C-bcaoLwWxye3gheQl5BewC0rgcBnMBRcHgCdkBr8osb8vmKdmxtmQZb_JvJ-Q0hAfGgLOKPycnHCpe1029Iz-_Rj9jnL20VI49teawTp0ZezMe0pG0S1CBOk3jUdFJeTNZGQaDNKgxOE97N0gzruBL6O5pWu6PVg5LbySNXuIx3UcTaJinyflIJfXOqtXd7a8oLpg2Xh1mm5QbX5BnWtqgXj7OZ-T-w_u7_afs5vPH6_3VTYYFlJC12EusUDalKkCh1i3kue5zDR020KIsqo4B5Br7umZFU3Q1MAkV0zK9nAM_I2-2XBeiEQFNVHhEN44Ko0gOmnZF5xuavPs-qxDFYAIqa-Wo3BxEzlld87Yqm0Tf_kMf3OzT762qBF60rMyTercp9C4Er7SYvBmkXwQwsVYpUpXid5XJvn5MnLtB9X_ln-4SuNzAD2PV8v8kcXt7vUX-As4zqNY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351349052</pqid></control><display><type>article</type><title>Structural and ligand binding analyses of the periplasmic sensor domain of RsbU in Chlamydia trachomatis support a role in TCA cycle regulation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Soules, Katelyn R. ; Dmitriev, Aidan ; LaBrie, Scott D. ; Dimond, Zoë E. ; May, Benjamin H. ; Johnson, David K. ; Zhang, Yang ; Battaile, Kevin P. ; Lovell, Scott ; Hefty, P. Scott</creator><creatorcontrib>Soules, Katelyn R. ; Dmitriev, Aidan ; LaBrie, Scott D. ; Dimond, Zoë E. ; May, Benjamin H. ; Johnson, David K. ; Zhang, Yang ; Battaile, Kevin P. ; Lovell, Scott ; Hefty, P. Scott ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Summary Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia encodes homologs to proteins in the Rsb phosphoregulatory partner‐switching pathway, best described in Bacillus subtilis. ORF CT588 has a strong sequence similarity to RsbU cytoplasmic phosphatase domain but also contains a unique periplasmic sensor domain that is expected to control the phosphatase activity. A 1.7 Å crystal structure of the periplasmic domain of the RsbU protein from C. trachomatis (PDB 6MAB) displays close structural similarity to DctB from Vibrio and Sinorhizobium. DctB has been shown, both structurally and functionally, to specifically bind to the tricarboxylic acid (TCA) cycle intermediate succinate. Surface plasmon resonance and differential scanning fluorimetry of TCA intermediates and potential metabolites from a virtual screen of RsbU revealed that alpha‐ketoglutarate, malate and oxaloacetate bound to the RsbU periplasmic domain. Substitutions in the putative binding site resulted in reduced binding capabilities. An RsbU null mutant showed severe growth defects which could be restored through genetic complementation. Chemical inhibition of ATP synthesis by oxidative phosphorylation phenocopied the growth defect observed in the RsbU null strain. Altogether, these data support a model with the Rsb system responding differentially to TCA cycle intermediates to regulate metabolism and key differentiation processes. Structure and functional analyses of the periplasmic sensor domain of RsbU (CT588) from Chlamydia trachomatis support binding to three TCA intermediates; malate, alpha‐ketoglutarate and oxaloacetate. Genetic null mutants of rsbU display a strong dependence on this gene product for the growth and progeny production. These observations, combined with prior studies associated with terminal RsbW partners, indicate the regulation of the metabolic activity by the Rsb system in response to these intermediate TCA cycle components.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.14401</identifier><identifier>PMID: 31637787</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding sites ; Chemical synthesis ; Chlamydia ; Chlamydia trachomatis ; Chlamydia trachomatis - metabolism ; Citric Acid Cycle ; Complementation ; Crystal defects ; Crystal structure ; Environmental conditions ; Environmental regulations ; Fluorimetry ; Homology ; Intermediates ; Ketoglutaric acid ; Malate ; Metabolism ; Metabolites ; Mutants ; Open reading frames ; Organic chemistry ; Oxidative phosphorylation ; Phosphatase ; Phosphoric Monoester Hydrolases - chemistry ; Phosphoric Monoester Hydrolases - metabolism ; Phosphorylation ; Protein Domains ; Proteins ; Similarity ; Surface plasmon resonance ; Tricarboxylic acid cycle ; Waterborne diseases</subject><ispartof>Molecular microbiology, 2020-01, Vol.113 (1), p.68-88</ispartof><rights>2019 John Wiley &amp; Sons Ltd</rights><rights>2019 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4151-9cdac6ca85e41ecff9122fd2f1bc819ca46b0112fcd770484b710a160fa637313</citedby><cites>FETCH-LOGICAL-c4151-9cdac6ca85e41ecff9122fd2f1bc819ca46b0112fcd770484b710a160fa637313</cites><orcidid>0000-0002-2303-2465 ; 0000000223032465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31637787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1601891$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Soules, Katelyn R.</creatorcontrib><creatorcontrib>Dmitriev, Aidan</creatorcontrib><creatorcontrib>LaBrie, Scott D.</creatorcontrib><creatorcontrib>Dimond, Zoë E.</creatorcontrib><creatorcontrib>May, Benjamin H.</creatorcontrib><creatorcontrib>Johnson, David K.</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Battaile, Kevin P.</creatorcontrib><creatorcontrib>Lovell, Scott</creatorcontrib><creatorcontrib>Hefty, P. Scott</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Structural and ligand binding analyses of the periplasmic sensor domain of RsbU in Chlamydia trachomatis support a role in TCA cycle regulation</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia encodes homologs to proteins in the Rsb phosphoregulatory partner‐switching pathway, best described in Bacillus subtilis. ORF CT588 has a strong sequence similarity to RsbU cytoplasmic phosphatase domain but also contains a unique periplasmic sensor domain that is expected to control the phosphatase activity. A 1.7 Å crystal structure of the periplasmic domain of the RsbU protein from C. trachomatis (PDB 6MAB) displays close structural similarity to DctB from Vibrio and Sinorhizobium. DctB has been shown, both structurally and functionally, to specifically bind to the tricarboxylic acid (TCA) cycle intermediate succinate. Surface plasmon resonance and differential scanning fluorimetry of TCA intermediates and potential metabolites from a virtual screen of RsbU revealed that alpha‐ketoglutarate, malate and oxaloacetate bound to the RsbU periplasmic domain. Substitutions in the putative binding site resulted in reduced binding capabilities. An RsbU null mutant showed severe growth defects which could be restored through genetic complementation. Chemical inhibition of ATP synthesis by oxidative phosphorylation phenocopied the growth defect observed in the RsbU null strain. Altogether, these data support a model with the Rsb system responding differentially to TCA cycle intermediates to regulate metabolism and key differentiation processes. Structure and functional analyses of the periplasmic sensor domain of RsbU (CT588) from Chlamydia trachomatis support binding to three TCA intermediates; malate, alpha‐ketoglutarate and oxaloacetate. Genetic null mutants of rsbU display a strong dependence on this gene product for the growth and progeny production. These observations, combined with prior studies associated with terminal RsbW partners, indicate the regulation of the metabolic activity by the Rsb system in response to these intermediate TCA cycle components.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Chemical synthesis</subject><subject>Chlamydia</subject><subject>Chlamydia trachomatis</subject><subject>Chlamydia trachomatis - metabolism</subject><subject>Citric Acid Cycle</subject><subject>Complementation</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Environmental conditions</subject><subject>Environmental regulations</subject><subject>Fluorimetry</subject><subject>Homology</subject><subject>Intermediates</subject><subject>Ketoglutaric acid</subject><subject>Malate</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mutants</subject><subject>Open reading frames</subject><subject>Organic chemistry</subject><subject>Oxidative phosphorylation</subject><subject>Phosphatase</subject><subject>Phosphoric Monoester Hydrolases - chemistry</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Similarity</subject><subject>Surface plasmon resonance</subject><subject>Tricarboxylic acid cycle</subject><subject>Waterborne diseases</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10UtrFTEYBuAgij2tLvwDEnRTF9Pmm8x1WQ5eCi2CtuAuZL5JzknJTMYkg8yv8C-bcaoLwWxye3gheQl5BewC0rgcBnMBRcHgCdkBr8osb8vmKdmxtmQZb_JvJ-Q0hAfGgLOKPycnHCpe1029Iz-_Rj9jnL20VI49teawTp0ZezMe0pG0S1CBOk3jUdFJeTNZGQaDNKgxOE97N0gzruBL6O5pWu6PVg5LbySNXuIx3UcTaJinyflIJfXOqtXd7a8oLpg2Xh1mm5QbX5BnWtqgXj7OZ-T-w_u7_afs5vPH6_3VTYYFlJC12EusUDalKkCh1i3kue5zDR020KIsqo4B5Br7umZFU3Q1MAkV0zK9nAM_I2-2XBeiEQFNVHhEN44Ko0gOmnZF5xuavPs-qxDFYAIqa-Wo3BxEzlld87Yqm0Tf_kMf3OzT762qBF60rMyTercp9C4Er7SYvBmkXwQwsVYpUpXid5XJvn5MnLtB9X_ln-4SuNzAD2PV8v8kcXt7vUX-As4zqNY</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Soules, Katelyn R.</creator><creator>Dmitriev, Aidan</creator><creator>LaBrie, Scott D.</creator><creator>Dimond, Zoë E.</creator><creator>May, Benjamin H.</creator><creator>Johnson, David K.</creator><creator>Zhang, Yang</creator><creator>Battaile, Kevin P.</creator><creator>Lovell, Scott</creator><creator>Hefty, P. Scott</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2303-2465</orcidid><orcidid>https://orcid.org/0000000223032465</orcidid></search><sort><creationdate>202001</creationdate><title>Structural and ligand binding analyses of the periplasmic sensor domain of RsbU in Chlamydia trachomatis support a role in TCA cycle regulation</title><author>Soules, Katelyn R. ; Dmitriev, Aidan ; LaBrie, Scott D. ; Dimond, Zoë E. ; May, Benjamin H. ; Johnson, David K. ; Zhang, Yang ; Battaile, Kevin P. ; Lovell, Scott ; Hefty, P. Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4151-9cdac6ca85e41ecff9122fd2f1bc819ca46b0112fcd770484b710a160fa637313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Chemical synthesis</topic><topic>Chlamydia</topic><topic>Chlamydia trachomatis</topic><topic>Chlamydia trachomatis - metabolism</topic><topic>Citric Acid Cycle</topic><topic>Complementation</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Environmental conditions</topic><topic>Environmental regulations</topic><topic>Fluorimetry</topic><topic>Homology</topic><topic>Intermediates</topic><topic>Ketoglutaric acid</topic><topic>Malate</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mutants</topic><topic>Open reading frames</topic><topic>Organic chemistry</topic><topic>Oxidative phosphorylation</topic><topic>Phosphatase</topic><topic>Phosphoric Monoester Hydrolases - chemistry</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Similarity</topic><topic>Surface plasmon resonance</topic><topic>Tricarboxylic acid cycle</topic><topic>Waterborne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soules, Katelyn R.</creatorcontrib><creatorcontrib>Dmitriev, Aidan</creatorcontrib><creatorcontrib>LaBrie, Scott D.</creatorcontrib><creatorcontrib>Dimond, Zoë E.</creatorcontrib><creatorcontrib>May, Benjamin H.</creatorcontrib><creatorcontrib>Johnson, David K.</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Battaile, Kevin P.</creatorcontrib><creatorcontrib>Lovell, Scott</creatorcontrib><creatorcontrib>Hefty, P. Scott</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soules, Katelyn R.</au><au>Dmitriev, Aidan</au><au>LaBrie, Scott D.</au><au>Dimond, Zoë E.</au><au>May, Benjamin H.</au><au>Johnson, David K.</au><au>Zhang, Yang</au><au>Battaile, Kevin P.</au><au>Lovell, Scott</au><au>Hefty, P. Scott</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and ligand binding analyses of the periplasmic sensor domain of RsbU in Chlamydia trachomatis support a role in TCA cycle regulation</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2020-01</date><risdate>2020</risdate><volume>113</volume><issue>1</issue><spage>68</spage><epage>88</epage><pages>68-88</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia encodes homologs to proteins in the Rsb phosphoregulatory partner‐switching pathway, best described in Bacillus subtilis. ORF CT588 has a strong sequence similarity to RsbU cytoplasmic phosphatase domain but also contains a unique periplasmic sensor domain that is expected to control the phosphatase activity. A 1.7 Å crystal structure of the periplasmic domain of the RsbU protein from C. trachomatis (PDB 6MAB) displays close structural similarity to DctB from Vibrio and Sinorhizobium. DctB has been shown, both structurally and functionally, to specifically bind to the tricarboxylic acid (TCA) cycle intermediate succinate. Surface plasmon resonance and differential scanning fluorimetry of TCA intermediates and potential metabolites from a virtual screen of RsbU revealed that alpha‐ketoglutarate, malate and oxaloacetate bound to the RsbU periplasmic domain. Substitutions in the putative binding site resulted in reduced binding capabilities. An RsbU null mutant showed severe growth defects which could be restored through genetic complementation. Chemical inhibition of ATP synthesis by oxidative phosphorylation phenocopied the growth defect observed in the RsbU null strain. Altogether, these data support a model with the Rsb system responding differentially to TCA cycle intermediates to regulate metabolism and key differentiation processes. Structure and functional analyses of the periplasmic sensor domain of RsbU (CT588) from Chlamydia trachomatis support binding to three TCA intermediates; malate, alpha‐ketoglutarate and oxaloacetate. Genetic null mutants of rsbU display a strong dependence on this gene product for the growth and progeny production. These observations, combined with prior studies associated with terminal RsbW partners, indicate the regulation of the metabolic activity by the Rsb system in response to these intermediate TCA cycle components.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>31637787</pmid><doi>10.1111/mmi.14401</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2303-2465</orcidid><orcidid>https://orcid.org/0000000223032465</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2020-01, Vol.113 (1), p.68-88
issn 0950-382X
1365-2958
language eng
recordid cdi_osti_scitechconnect_1601891
source Wiley-Blackwell Read & Publish Collection
subjects Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Binding sites
Chemical synthesis
Chlamydia
Chlamydia trachomatis
Chlamydia trachomatis - metabolism
Citric Acid Cycle
Complementation
Crystal defects
Crystal structure
Environmental conditions
Environmental regulations
Fluorimetry
Homology
Intermediates
Ketoglutaric acid
Malate
Metabolism
Metabolites
Mutants
Open reading frames
Organic chemistry
Oxidative phosphorylation
Phosphatase
Phosphoric Monoester Hydrolases - chemistry
Phosphoric Monoester Hydrolases - metabolism
Phosphorylation
Protein Domains
Proteins
Similarity
Surface plasmon resonance
Tricarboxylic acid cycle
Waterborne diseases
title Structural and ligand binding analyses of the periplasmic sensor domain of RsbU in Chlamydia trachomatis support a role in TCA cycle regulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20ligand%20binding%20analyses%20of%20the%20periplasmic%20sensor%20domain%20of%20RsbU%20in%20Chlamydia%20trachomatis%20support%20a%20role%20in%20TCA%20cycle%20regulation&rft.jtitle=Molecular%20microbiology&rft.au=Soules,%20Katelyn%20R.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-01&rft.volume=113&rft.issue=1&rft.spage=68&rft.epage=88&rft.pages=68-88&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.14401&rft_dat=%3Cproquest_osti_%3E2351349052%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4151-9cdac6ca85e41ecff9122fd2f1bc819ca46b0112fcd770484b710a160fa637313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2351349052&rft_id=info:pmid/31637787&rfr_iscdi=true