Loading…
n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes
n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these mate...
Saved in:
Published in: | Advanced functional materials 2020-04, Vol.30 (17), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643 |
---|---|
cites | cdi_FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643 |
container_end_page | n/a |
container_issue | 17 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Smith, Hannah L. Dull, Jordan T. Longhi, Elena Barlow, Stephen Rand, Barry P. Marder, Seth R. Kahn, Antoine |
description | n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL.
The n‐dopant [RuCp*Mes]2 is incorporated into the polymer F8BT via solution processing. Successful n‐doping is verified using photoelectron spectroscopy and conductivity measurements. The doped F8BT film is used as an electron‐transport layer in green organic light‐emitting diodes, allowing good electron injection and high luminance and external quantum efficiency. |
doi_str_mv | 10.1002/adfm.202000328 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1601907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394762761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643</originalsourceid><addsrcrecordid>eNqFkc9OAjEQxjdGExG9em70DE53S7d7JOC_ZA0eIPHWlG4XSqDFtsSsJx_BZ_RJ7AaD3jzNZOb3zXzJlySXGPoYIL0RVb3pp5ACQJayo6SDKaa9DFJ2fOjxy2ly5v0KAOd5RjrJu_n6-BzbrTYLZGskUGnf4uR2rWRwtl0O61obHRr0bNfNRjk086pCwiNh0B9s6oTxW-sCKkUTKW3QxC2E0RKVerEM7dGNDqF9NNa2Uv48OanF2quLn9pNZne309FDr5zcP46GZU9mjLBeWgEtol1aMDUoBhWrciZwnc0zqKuKUkYUYwMlRVwOAFROxZwQMqdKEiYpybrJ1f6u9UFzL3VQcimtMdE7xxRwAXmErvfQ1tnXnfKBr-zOmeiLp1lBcprmFEeqv6eks947VfOt0xvhGo6BtyHwNgR-CCEKir3gTa9V8w_Nh-O7p1_tNwDWj34</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394762761</pqid></control><display><type>article</type><title>n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Smith, Hannah L. ; Dull, Jordan T. ; Longhi, Elena ; Barlow, Stephen ; Rand, Barry P. ; Marder, Seth R. ; Kahn, Antoine</creator><creatorcontrib>Smith, Hannah L. ; Dull, Jordan T. ; Longhi, Elena ; Barlow, Stephen ; Rand, Barry P. ; Marder, Seth R. ; Kahn, Antoine</creatorcontrib><description>n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL.
The n‐dopant [RuCp*Mes]2 is incorporated into the polymer F8BT via solution processing. Successful n‐doping is verified using photoelectron spectroscopy and conductivity measurements. The doped F8BT film is used as an electron‐transport layer in green organic light‐emitting diodes, allowing good electron injection and high luminance and external quantum efficiency.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000328</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Affinity ; Conductivity ; Dimers ; Doping ; Electron affinity ; Electrons ; electron‐transport layers ; low‐electron‐affinity polymers n‐doping ; Materials science ; Molecular orbitals ; Organic light emitting diodes ; organic semiconductors ; Phosphorescence ; Photoelectrons ; Polymers ; Ruthenium ; Transport ; Trimethylbenzene ; Ultraviolet radiation</subject><ispartof>Advanced functional materials, 2020-04, Vol.30 (17), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643</citedby><cites>FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643</cites><orcidid>0000-0002-7290-8865 ; 0000-0003-4409-8751 ; 0000-0001-6921-2536 ; 0000-0001-9059-9974 ; 0000-0002-1612-3350 ; 0000000216123350 ; 0000000169212536 ; 0000000190599974 ; 0000000272908865 ; 0000000344098751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1601907$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Hannah L.</creatorcontrib><creatorcontrib>Dull, Jordan T.</creatorcontrib><creatorcontrib>Longhi, Elena</creatorcontrib><creatorcontrib>Barlow, Stephen</creatorcontrib><creatorcontrib>Rand, Barry P.</creatorcontrib><creatorcontrib>Marder, Seth R.</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><title>n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes</title><title>Advanced functional materials</title><description>n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL.
The n‐dopant [RuCp*Mes]2 is incorporated into the polymer F8BT via solution processing. Successful n‐doping is verified using photoelectron spectroscopy and conductivity measurements. The doped F8BT film is used as an electron‐transport layer in green organic light‐emitting diodes, allowing good electron injection and high luminance and external quantum efficiency.</description><subject>Affinity</subject><subject>Conductivity</subject><subject>Dimers</subject><subject>Doping</subject><subject>Electron affinity</subject><subject>Electrons</subject><subject>electron‐transport layers</subject><subject>low‐electron‐affinity polymers n‐doping</subject><subject>Materials science</subject><subject>Molecular orbitals</subject><subject>Organic light emitting diodes</subject><subject>organic semiconductors</subject><subject>Phosphorescence</subject><subject>Photoelectrons</subject><subject>Polymers</subject><subject>Ruthenium</subject><subject>Transport</subject><subject>Trimethylbenzene</subject><subject>Ultraviolet radiation</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc9OAjEQxjdGExG9em70DE53S7d7JOC_ZA0eIPHWlG4XSqDFtsSsJx_BZ_RJ7AaD3jzNZOb3zXzJlySXGPoYIL0RVb3pp5ACQJayo6SDKaa9DFJ2fOjxy2ly5v0KAOd5RjrJu_n6-BzbrTYLZGskUGnf4uR2rWRwtl0O61obHRr0bNfNRjk086pCwiNh0B9s6oTxW-sCKkUTKW3QxC2E0RKVerEM7dGNDqF9NNa2Uv48OanF2quLn9pNZne309FDr5zcP46GZU9mjLBeWgEtol1aMDUoBhWrciZwnc0zqKuKUkYUYwMlRVwOAFROxZwQMqdKEiYpybrJ1f6u9UFzL3VQcimtMdE7xxRwAXmErvfQ1tnXnfKBr-zOmeiLp1lBcprmFEeqv6eks947VfOt0xvhGo6BtyHwNgR-CCEKir3gTa9V8w_Nh-O7p1_tNwDWj34</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Smith, Hannah L.</creator><creator>Dull, Jordan T.</creator><creator>Longhi, Elena</creator><creator>Barlow, Stephen</creator><creator>Rand, Barry P.</creator><creator>Marder, Seth R.</creator><creator>Kahn, Antoine</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7290-8865</orcidid><orcidid>https://orcid.org/0000-0003-4409-8751</orcidid><orcidid>https://orcid.org/0000-0001-6921-2536</orcidid><orcidid>https://orcid.org/0000-0001-9059-9974</orcidid><orcidid>https://orcid.org/0000-0002-1612-3350</orcidid><orcidid>https://orcid.org/0000000216123350</orcidid><orcidid>https://orcid.org/0000000169212536</orcidid><orcidid>https://orcid.org/0000000190599974</orcidid><orcidid>https://orcid.org/0000000272908865</orcidid><orcidid>https://orcid.org/0000000344098751</orcidid></search><sort><creationdate>20200401</creationdate><title>n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes</title><author>Smith, Hannah L. ; Dull, Jordan T. ; Longhi, Elena ; Barlow, Stephen ; Rand, Barry P. ; Marder, Seth R. ; Kahn, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Conductivity</topic><topic>Dimers</topic><topic>Doping</topic><topic>Electron affinity</topic><topic>Electrons</topic><topic>electron‐transport layers</topic><topic>low‐electron‐affinity polymers n‐doping</topic><topic>Materials science</topic><topic>Molecular orbitals</topic><topic>Organic light emitting diodes</topic><topic>organic semiconductors</topic><topic>Phosphorescence</topic><topic>Photoelectrons</topic><topic>Polymers</topic><topic>Ruthenium</topic><topic>Transport</topic><topic>Trimethylbenzene</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Hannah L.</creatorcontrib><creatorcontrib>Dull, Jordan T.</creatorcontrib><creatorcontrib>Longhi, Elena</creatorcontrib><creatorcontrib>Barlow, Stephen</creatorcontrib><creatorcontrib>Rand, Barry P.</creatorcontrib><creatorcontrib>Marder, Seth R.</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Hannah L.</au><au>Dull, Jordan T.</au><au>Longhi, Elena</au><au>Barlow, Stephen</au><au>Rand, Barry P.</au><au>Marder, Seth R.</au><au>Kahn, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes</atitle><jtitle>Advanced functional materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>17</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL.
The n‐dopant [RuCp*Mes]2 is incorporated into the polymer F8BT via solution processing. Successful n‐doping is verified using photoelectron spectroscopy and conductivity measurements. The doped F8BT film is used as an electron‐transport layer in green organic light‐emitting diodes, allowing good electron injection and high luminance and external quantum efficiency.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202000328</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7290-8865</orcidid><orcidid>https://orcid.org/0000-0003-4409-8751</orcidid><orcidid>https://orcid.org/0000-0001-6921-2536</orcidid><orcidid>https://orcid.org/0000-0001-9059-9974</orcidid><orcidid>https://orcid.org/0000-0002-1612-3350</orcidid><orcidid>https://orcid.org/0000000216123350</orcidid><orcidid>https://orcid.org/0000000169212536</orcidid><orcidid>https://orcid.org/0000000190599974</orcidid><orcidid>https://orcid.org/0000000272908865</orcidid><orcidid>https://orcid.org/0000000344098751</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-04, Vol.30 (17), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_osti_scitechconnect_1601907 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Affinity Conductivity Dimers Doping Electron affinity Electrons electron‐transport layers low‐electron‐affinity polymers n‐doping Materials science Molecular orbitals Organic light emitting diodes organic semiconductors Phosphorescence Photoelectrons Polymers Ruthenium Transport Trimethylbenzene Ultraviolet radiation |
title | n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=n%E2%80%90Doping%20of%20a%20Low%E2%80%90Electron%E2%80%90Affinity%20Polymer%20Used%20as%20an%20Electron%E2%80%90Transport%20Layer%20in%20Organic%20Light%E2%80%90Emitting%20Diodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Smith,%20Hannah%20L.&rft.date=2020-04-01&rft.volume=30&rft.issue=17&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000328&rft_dat=%3Cproquest_osti_%3E2394762761%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2394762761&rft_id=info:pmid/&rfr_iscdi=true |