Loading…

n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes

n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these mate...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2020-04, Vol.30 (17), p.n/a
Main Authors: Smith, Hannah L., Dull, Jordan T., Longhi, Elena, Barlow, Stephen, Rand, Barry P., Marder, Seth R., Kahn, Antoine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643
cites cdi_FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643
container_end_page n/a
container_issue 17
container_start_page
container_title Advanced functional materials
container_volume 30
creator Smith, Hannah L.
Dull, Jordan T.
Longhi, Elena
Barlow, Stephen
Rand, Barry P.
Marder, Seth R.
Kahn, Antoine
description n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL. The n‐dopant [RuCp*Mes]2 is incorporated into the polymer F8BT via solution processing. Successful n‐doping is verified using photoelectron spectroscopy and conductivity measurements. The doped F8BT film is used as an electron‐transport layer in green organic light‐emitting diodes, allowing good electron injection and high luminance and external quantum efficiency.
doi_str_mv 10.1002/adfm.202000328
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1601907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394762761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643</originalsourceid><addsrcrecordid>eNqFkc9OAjEQxjdGExG9em70DE53S7d7JOC_ZA0eIPHWlG4XSqDFtsSsJx_BZ_RJ7AaD3jzNZOb3zXzJlySXGPoYIL0RVb3pp5ACQJayo6SDKaa9DFJ2fOjxy2ly5v0KAOd5RjrJu_n6-BzbrTYLZGskUGnf4uR2rWRwtl0O61obHRr0bNfNRjk086pCwiNh0B9s6oTxW-sCKkUTKW3QxC2E0RKVerEM7dGNDqF9NNa2Uv48OanF2quLn9pNZne309FDr5zcP46GZU9mjLBeWgEtol1aMDUoBhWrciZwnc0zqKuKUkYUYwMlRVwOAFROxZwQMqdKEiYpybrJ1f6u9UFzL3VQcimtMdE7xxRwAXmErvfQ1tnXnfKBr-zOmeiLp1lBcprmFEeqv6eks947VfOt0xvhGo6BtyHwNgR-CCEKir3gTa9V8w_Nh-O7p1_tNwDWj34</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394762761</pqid></control><display><type>article</type><title>n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Smith, Hannah L. ; Dull, Jordan T. ; Longhi, Elena ; Barlow, Stephen ; Rand, Barry P. ; Marder, Seth R. ; Kahn, Antoine</creator><creatorcontrib>Smith, Hannah L. ; Dull, Jordan T. ; Longhi, Elena ; Barlow, Stephen ; Rand, Barry P. ; Marder, Seth R. ; Kahn, Antoine</creatorcontrib><description>n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL. The n‐dopant [RuCp*Mes]2 is incorporated into the polymer F8BT via solution processing. Successful n‐doping is verified using photoelectron spectroscopy and conductivity measurements. The doped F8BT film is used as an electron‐transport layer in green organic light‐emitting diodes, allowing good electron injection and high luminance and external quantum efficiency.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000328</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Affinity ; Conductivity ; Dimers ; Doping ; Electron affinity ; Electrons ; electron‐transport layers ; low‐electron‐affinity polymers n‐doping ; Materials science ; Molecular orbitals ; Organic light emitting diodes ; organic semiconductors ; Phosphorescence ; Photoelectrons ; Polymers ; Ruthenium ; Transport ; Trimethylbenzene ; Ultraviolet radiation</subject><ispartof>Advanced functional materials, 2020-04, Vol.30 (17), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643</citedby><cites>FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643</cites><orcidid>0000-0002-7290-8865 ; 0000-0003-4409-8751 ; 0000-0001-6921-2536 ; 0000-0001-9059-9974 ; 0000-0002-1612-3350 ; 0000000216123350 ; 0000000169212536 ; 0000000190599974 ; 0000000272908865 ; 0000000344098751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1601907$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Hannah L.</creatorcontrib><creatorcontrib>Dull, Jordan T.</creatorcontrib><creatorcontrib>Longhi, Elena</creatorcontrib><creatorcontrib>Barlow, Stephen</creatorcontrib><creatorcontrib>Rand, Barry P.</creatorcontrib><creatorcontrib>Marder, Seth R.</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><title>n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes</title><title>Advanced functional materials</title><description>n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL. The n‐dopant [RuCp*Mes]2 is incorporated into the polymer F8BT via solution processing. Successful n‐doping is verified using photoelectron spectroscopy and conductivity measurements. The doped F8BT film is used as an electron‐transport layer in green organic light‐emitting diodes, allowing good electron injection and high luminance and external quantum efficiency.</description><subject>Affinity</subject><subject>Conductivity</subject><subject>Dimers</subject><subject>Doping</subject><subject>Electron affinity</subject><subject>Electrons</subject><subject>electron‐transport layers</subject><subject>low‐electron‐affinity polymers n‐doping</subject><subject>Materials science</subject><subject>Molecular orbitals</subject><subject>Organic light emitting diodes</subject><subject>organic semiconductors</subject><subject>Phosphorescence</subject><subject>Photoelectrons</subject><subject>Polymers</subject><subject>Ruthenium</subject><subject>Transport</subject><subject>Trimethylbenzene</subject><subject>Ultraviolet radiation</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc9OAjEQxjdGExG9em70DE53S7d7JOC_ZA0eIPHWlG4XSqDFtsSsJx_BZ_RJ7AaD3jzNZOb3zXzJlySXGPoYIL0RVb3pp5ACQJayo6SDKaa9DFJ2fOjxy2ly5v0KAOd5RjrJu_n6-BzbrTYLZGskUGnf4uR2rWRwtl0O61obHRr0bNfNRjk086pCwiNh0B9s6oTxW-sCKkUTKW3QxC2E0RKVerEM7dGNDqF9NNa2Uv48OanF2quLn9pNZne309FDr5zcP46GZU9mjLBeWgEtol1aMDUoBhWrciZwnc0zqKuKUkYUYwMlRVwOAFROxZwQMqdKEiYpybrJ1f6u9UFzL3VQcimtMdE7xxRwAXmErvfQ1tnXnfKBr-zOmeiLp1lBcprmFEeqv6eks947VfOt0xvhGo6BtyHwNgR-CCEKir3gTa9V8w_Nh-O7p1_tNwDWj34</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Smith, Hannah L.</creator><creator>Dull, Jordan T.</creator><creator>Longhi, Elena</creator><creator>Barlow, Stephen</creator><creator>Rand, Barry P.</creator><creator>Marder, Seth R.</creator><creator>Kahn, Antoine</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7290-8865</orcidid><orcidid>https://orcid.org/0000-0003-4409-8751</orcidid><orcidid>https://orcid.org/0000-0001-6921-2536</orcidid><orcidid>https://orcid.org/0000-0001-9059-9974</orcidid><orcidid>https://orcid.org/0000-0002-1612-3350</orcidid><orcidid>https://orcid.org/0000000216123350</orcidid><orcidid>https://orcid.org/0000000169212536</orcidid><orcidid>https://orcid.org/0000000190599974</orcidid><orcidid>https://orcid.org/0000000272908865</orcidid><orcidid>https://orcid.org/0000000344098751</orcidid></search><sort><creationdate>20200401</creationdate><title>n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes</title><author>Smith, Hannah L. ; Dull, Jordan T. ; Longhi, Elena ; Barlow, Stephen ; Rand, Barry P. ; Marder, Seth R. ; Kahn, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Conductivity</topic><topic>Dimers</topic><topic>Doping</topic><topic>Electron affinity</topic><topic>Electrons</topic><topic>electron‐transport layers</topic><topic>low‐electron‐affinity polymers n‐doping</topic><topic>Materials science</topic><topic>Molecular orbitals</topic><topic>Organic light emitting diodes</topic><topic>organic semiconductors</topic><topic>Phosphorescence</topic><topic>Photoelectrons</topic><topic>Polymers</topic><topic>Ruthenium</topic><topic>Transport</topic><topic>Trimethylbenzene</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Hannah L.</creatorcontrib><creatorcontrib>Dull, Jordan T.</creatorcontrib><creatorcontrib>Longhi, Elena</creatorcontrib><creatorcontrib>Barlow, Stephen</creatorcontrib><creatorcontrib>Rand, Barry P.</creatorcontrib><creatorcontrib>Marder, Seth R.</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Hannah L.</au><au>Dull, Jordan T.</au><au>Longhi, Elena</au><au>Barlow, Stephen</au><au>Rand, Barry P.</au><au>Marder, Seth R.</au><au>Kahn, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes</atitle><jtitle>Advanced functional materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>17</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL. The n‐dopant [RuCp*Mes]2 is incorporated into the polymer F8BT via solution processing. Successful n‐doping is verified using photoelectron spectroscopy and conductivity measurements. The doped F8BT film is used as an electron‐transport layer in green organic light‐emitting diodes, allowing good electron injection and high luminance and external quantum efficiency.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202000328</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7290-8865</orcidid><orcidid>https://orcid.org/0000-0003-4409-8751</orcidid><orcidid>https://orcid.org/0000-0001-6921-2536</orcidid><orcidid>https://orcid.org/0000-0001-9059-9974</orcidid><orcidid>https://orcid.org/0000-0002-1612-3350</orcidid><orcidid>https://orcid.org/0000000216123350</orcidid><orcidid>https://orcid.org/0000000169212536</orcidid><orcidid>https://orcid.org/0000000190599974</orcidid><orcidid>https://orcid.org/0000000272908865</orcidid><orcidid>https://orcid.org/0000000344098751</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-04, Vol.30 (17), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1601907
source Wiley-Blackwell Read & Publish Collection
subjects Affinity
Conductivity
Dimers
Doping
Electron affinity
Electrons
electron‐transport layers
low‐electron‐affinity polymers n‐doping
Materials science
Molecular orbitals
Organic light emitting diodes
organic semiconductors
Phosphorescence
Photoelectrons
Polymers
Ruthenium
Transport
Trimethylbenzene
Ultraviolet radiation
title n‐Doping of a Low‐Electron‐Affinity Polymer Used as an Electron‐Transport Layer in Organic Light‐Emitting Diodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=n%E2%80%90Doping%20of%20a%20Low%E2%80%90Electron%E2%80%90Affinity%20Polymer%20Used%20as%20an%20Electron%E2%80%90Transport%20Layer%20in%20Organic%20Light%E2%80%90Emitting%20Diodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Smith,%20Hannah%20L.&rft.date=2020-04-01&rft.volume=30&rft.issue=17&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000328&rft_dat=%3Cproquest_osti_%3E2394762761%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3848-2d069017698e595d8d78a1f3b30fdd6684e885eca595500e76ab444b6ec48c643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2394762761&rft_id=info:pmid/&rfr_iscdi=true